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Convolutional neural networks (CNNs) have risen to be the de-facto paragon for detecting the

presence of objects in a scene, as portrayed by an image. CNNs are described as being “approx-

imately invariant” to nuisance transformations such as planar translation, both by virtue of their

convolutional architecture and by virtue of their approximation properties that, given sufficient pa-

rameters and training data, could in principle yield discriminants that are insensitive to nuisance

transformations of the data. The fact that contemporary deep convolutional architectures appear

very effective in classifying images as containing a given object regardless of its position, scale,

and aspect ratio in large-scale benchmarks suggests that the network can effectively manage such

nuisance variability. We conduct an empirical study and show that, contrary to popular belief, at

the current level of complexity of convolutional architectures and scale of the data sets used to train

them, CNNs are not very effective at marginalizing nuisance variability.

This discovery leaves researchers the choice of investing more effort in the design of models

that are less sensitive to nuisances or designing better region proposal algorithms in an effort to

predict where the objects of interest lie and center the model around these regions. In this thesis

steps towards both directions are made. First, we introduce DSP-CNN, which deploys domain-size

pooling in order to transform the neural networks to be scale invariant in the convolutional oper-

ator level. Second, motivated by our empirical analysis, we propose novel sampling and pruning

techniques for region proposal schemes that improve the end-to-end performance in large-scale

classification, detection and wide-baseline correspondence to state-of-the-art levels. Additionally,

ii



since a proposal algorithm involves the design of a classifier, whose results are to be fed to another

classifier (a Category CNN), it seems natural to leverage on the latter to design the former. Thus,

we introduce a method that leverages on filters learned in the lower layers of CNNs to design a bi-

nary boosting classifier for generating class-agnostic proposals. Finally, we extend sampling over

time by designing a temporal, hard-attention layer which is trained with reinforcement learning,

with application in video sequences for person re-identification.
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CHAPTER 1

Introduction

Over the last decade, Convolutional neural networks (CNNs) [97] have risen to be the de-facto

paragon for detecting the presence of objects in a scene, as portrayed by an image. CNNs are de-

scribed as being “approximately invariant” to nuisance transformations such as planar translation,

both by virtue of their architecture (the same operation is repeated at every image location akin to a

“sliding window”) and by virtue of their approximation properties that, given sufficient parameters

and training data, could in principle yield discriminants that are insensitive to nuisance transfor-

mations of the data. In addition to planar translation, an object detector must manage variability

due to scaling (possibly anisotropic along the coordinate axes, yielding different aspect ratios) and

partial occlusion. Some nuisances are elements of a transformation group, e.g., the (anisotropic)

location-scale group for the case of position, scale and aspect ratio of the object’s support (i.e.,

the region of the image the objects projects onto, often approximated by a bounding box). The

fact that contemporary convolutional architectures [91, 146, 158, 68] appear very effective in clas-

sifying images as containing a given object regardless of its position, scale, and aspect ratio in

large-scale benchmarks (e.g., Imagenet [136]) suggests that the network can effectively manage

such nuisance variability. We conduct an empirical study and show in Chapter 2 that, contrary to

popular belief, at the current level of complexity of convolutional architectures and scale of the

data sets used to train them, CNNs are not very effective at marginalizing nuisance variability.

Our empirical analysis reveals a tradeoff between conditioning the CNN on the “true” location,

scale and aspect ratio of the object of interest, which should improve performance by suppress-

ing nuisance variability, and context subtraction which should reduce performance. The fact that

padding the ground-truth object bounding box in Imagenet Classification with a 25% rim improves

performance by a wide margin (e.g., 24% for AlexNet [91] and 37% for VGG-16 [146]), compared
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to using the whole image, is non-obvious and indicative of the inability of the CNN to successfully

capture context beyond a few pixels. Someone may expect that a CNN, in principle, has the ability

to capture co-occurrence statistics on the entire image domain, since the “receptive field” (regions

of the image plane) subtended by filters at higher layers encompass a large area of the image. How-

ever, the experiments conducted indicate that the CNN is not effectively leveraging such context.

This is shown in three steps: First, the baseline performance is comparable to restricting the image

to a bounding box containing the object of interest. Second, the baseline performance increases

if the image is restricted to the bounding box plus a small rim around it, suggesting that the net-

work indeed can leverage some context. Third, continuing to increase the rim size only hurts the

classification accuracy (see Fig. 2.1).

This discovery leaves researchers the choice of investing more effort in the design of mod-

els and learning algorithms that are more robust with the nuisances or invent region proposal

algorithms with higher recall and accuracy [73] in an effort to predict where the objects of in-

terest lie and center the model around these regions. The latter approach has emerged in split

pipelines [60, 159] whereby the image is first pre-processed to yield proposals, which are sub-

sets of the image domain (bounding boxes) to be tested for the presence of an object class by a

“Category CNN”. This seems to be counterproductive, as that way we discard the image outside

the proposal window, thus possibly forgoing side information or “context”. However, the recent

success in [136] has led many researchers away from letting the CNN manage all nuisance vari-

ability and instead towards creating better object proposal schemes and subtracting duties from the

Category CNN downstream. In this thesis steps toward both directions are made.

A brief justification of the concept of region proposals follows and we state where different

chapters of this manuscript fit in that picture. Next, a technique that targets at managing nuisances

in the model design is introduced. Afterwards, we present a model that learns away nuisance

variability and is applied on one task with no intrinsic variability (occlusion detection) and one

task with intra-class variability (segmentation). Finally, a theses outline is provided.
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1.1 Conditioning on estimated nuisance transformations

One can think of the conditional distribution of a class c given an image x, p(c|x), as defined

by a CNN, as the class posterior
∫
G
p(c|x, g)dP (g|x) marginalized with respect to the nuisance

group G. If the nuisances are known, one can use the class-conditionals p(c|x, gr) at each nuisance

gr ∈ G in order to approximate p(c|x) with a weighted average of conditionals, i.e., p(c|x) ≃∑
r p(c|x, gr)p(gr|x).

When a CNN is tested on a proposal r ⊆ x determined by a reference frame xr, it computes

p(c|x|r) (x restricted to r), which is an approximation of p(c|x, gr). Then, explicit marginaliza-

tion (assuming uniform weights) computes 1
|r|
∑

r p(c|x|r) which is different from 1
|r|
∑

r p(c|x, gr)

which in turn is different from
∑

r p(c|x, gr)p(gr|x). This approach is therefore, on average, a

lower bound on proper marginalization, and the fact that it would outperform the direct compu-

tation of p(c|x) is worth investigating empirically and our primary motivation for our work in

Section 2.

Put differently, rather than computing the posterior distribution with nuisance transformations

automatically marginalized, the CNN is used to compute the conditional distribution of classes

given the data and a sample element that approximates the nuisance transformation, represented

by a bounding box. If the goal is the nuisance itself (object support, as in detection [136]) it

can be found via maximum-likelihood (max-out) by selecting the bounding box that yields the

highest probability of any class [60]. If the goal is the class regardless of the transformation (as

in categorization [136]), the nuisance can be approximately marginalized out by averaging the

conditional distributions with respect to an estimation of the nuisance transformations.

Our empirical analysis in Chapter 2 motivates the widespread use of proposals and extends

them in an adaptive fashion. Improved sampling and pruning techniques for heuristic proposal

schemes are proposed that improve the end-to-end performance in large-scale classification, detec-

tion and wide-baseline correspondence to state-of-the-art levels.

In principle, the best proposal algorithm is the one that densely samples the group. However,

even for small-dimensional transformations such as the anisotropic translation-scale group, a sin-

gle image could yield billions of proposals. As in any sampling procedure, the goal is to trade off

3



performance with complexity. To this end, adaptive sampling schemes can be employed to select

proposals based on the data. Since a proposal algorithm involves the design of a classifier, whose

results are to be fed to another classifier (a Category CNN), it seems natural to want to leverage on

the latter to design the former. For instance, if the Category CNN computes a multi-class poste-

rior with pose, scale and aspect-ratio “marginalized”, we could recycle its powerful components to

produce a binary distribution (object vs. not) for a given pose, scale and aspect ratio, by marginal-

izing the classes. Therefore, in Chapter 3 we introduce an object proposal method that leverages

on filters learned in the lower layers of CNNs to design a binary boosting classifier and a linear

regressor to discard as many windows as possible that are unlikely to contain objects of interest.

Sampling proposals can be perceived as an attention mechanism as well. Attention models are

prevalent in both the computer vision and natural language processing communities and serve as

a powerful way to shrink the space of nuisance transformations in tractable levels. Attention is

important in both spatial and temporal domain. In Chapter 4 we introduce a novel hard-attention

mechanism in video sequences for person re-identification. Our approach is based on the REIN-

FORCE rule and an agent in the form of a recurrent deep neural network. Unlike Chapter 2 where

Rényi entropy and max-out are deployed for pruning samples, here a dedicated layer is designed

to evaluate the importance of current sample (frame) based on the generated reward, as the latter

one is quantified by the expected classification accuracy.

1.2 Handling nuisances in the model architecture

Our former work is based on the premise that a CNN is not as effective in dealing with simple

group transformations, which is derived by our analysis in Chapter 2 and the empirical success

of Regions-with-CNN approaches [60, 135] in the current benchmarks in use in the community.

Of course, empirical tests involve a large number of parameters and design choices that confound

the comparison, so it is possible that improvements in the design of CNNs, for instance by al-

lowing them to manage convolutions with respect to larger groups of transformations [59, 32],

would render the use of proposals moot. On the other hand, it is possible that the training cost of

marginalizing known classes of transformations such as location, scale, aspect ratio, in terms of
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size of the data set, may be too high for current architectures, even for convolutional networks that

are carefully designed to manage such variability.

A more desirable course of academic action than empirical evaluation, with the ensuing esca-

lating size of the datasets and number of parameters, would be to analyze the representational

properties of convolutional architectures to determine the extent in which they can effectively

marginalize nuisance variability by design, without the need to learn away nuisance variability

that is known to exist and well understood. In Appendix A.3 we study the structure of represen-

tations, defined as approximations of minimal sufficient statistics that are maximal invariants to

nuisance factors, for visual data subject to scaling and occlusion of line-of-sight. We derive analyt-

ical expressions for such representations and show that, under certain restrictive assumptions, they

are related to features commonly in use in the computer vision community. This link highlights the

conditions tacitly assumed by these descriptors, and also suggests ways to improve and generalize

them. One proposed technique is domain-size pooling which transforms the convolutional neural

networks to be scale invariant in the convolutional operator level. Our model is termed DSP-CNN

and we present implementation and experimental results in Section A.3.4. We have also extended

DSP-CNN to be deployable for a correspondence task, which is presented in Section 2.2.2.

1.3 Learning away nuisance variability

Our investigation of graphical models starts with Gated Restricted Boltzmann machine [157],

which is trained to learn away the nuisance variability present in in images, owing to noise and

changes of viewpoint and illumination. First, we establish a binary classification task with no in-

trinsic variability, which amounts to the determination of co-visibility from different images of the

same underlying scene. Later, we test our hypothesis in Image Segmentation from a single frame,

where the intrinsic variability of the scene objects adds up to the challenge.
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1.4 Thesis outline

• Chapter 2: We conduct an empirical study to test the ability of convolutional neural networks

(CNNs) to reduce the effects of nuisance transformations of the input data, such as location, scale

and aspect ratio. We isolate factors by adopting a common convolutional architecture either de-

ployed globally on the image to compute class posterior distributions, or restricted locally to com-

pute class conditional distributions given location, scale and aspect ratios of bounding boxes de-

termined by proposal heuristics. In theory, averaging the latter should yield inferior performance

compared to proper marginalization. Yet empirical evidence suggests the converse, leading us to

conclude that – at the current level of complexity of convolutional architectures and scale of the

data sets used to train them – CNNs are not very effective at marginalizing nuisance variability. We

also quantify the effects of context on the overall classification task and its impact on the perfor-

mance of CNNs, and propose improved sampling techniques for heuristic proposal schemes that

improve end-to-end performance to state-of-the-art levels. We test our hypothesis on a classifica-

tion task using the ImageNet Challenge benchmark [136] and on a wide-baseline matching task

using the Oxford [119] and Fischer [54] datasets.

• Chapter 3: We present a method to generate object proposals, in the form of bounding boxes in

a test image, to be fed to a classifier such as a convolutional neural network (CNN), in order to

reduce test time complexity of object detection and classification. We leverage on filters learned

in the lower layers of CNNs to design a binary boosting classifier and a linear regressor to discard

as many windows as possible that are unlikely to contain objects of interest. We test our method

against competing proposal schemes, and end-to-end on the Imagenet detection challenge. We

show state-of-the-art performance when at least 1000 proposals per frame are used, at a manage-

able computational complexity compared to alternate schemes that make heavier use of low-level

image processing.

•Chapter 4: This chapter targets person re-identification (ReID) from depth sensors such as Kinect.

Since depth is invariant to illumination and less sensitive than color to day-by-day appearance

changes, a natural question is whether depth is an effective modality for Person ReID, especially

in scenarios where individuals wear different colored clothes or over a period of several months.
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We explore the use of recurrent Deep Neural Networks for learning high-level shape information

from low-resolution depth images. In order to tackle the small sample size problem, we introduce

regularization and a hard temporal attention unit. The whole model can be trained end to end

with a hybrid supervised loss. We carry out a thorough experimental evaluation of the proposed

method on three person re-identification datasets, which include side views, views from the top and

sequences with varying degree of partial occlusion, pose and viewpoint variations. To that end, we

introduce a new dataset with RGB-D and skeleton data. In a scenario where subjects are recorded

after three months with new clothes, we demonstrate large performance gains attained using Depth

ReID compared to a state-of-the-art Color ReID. Finally, we show further improvements using the

temporal attention unit in multi-shot setting.

• Chapter 5: We test the hypothesis that a representation-learning architecture can train away the

nuisance variability present in images, owing to noise and changes of viewpoint and illumination.

First, we establish the simplest possible classification task, a binary classification with no intrinsic

variability, which amounts to the determination of co-visibility from different images of the same

underlying scene. This is the Occlusion Detection problem and the data are typically two sequen-

tial, but not necessarily consecutive or in order, video frames. Our network, based on a Gated

Restricted Boltzmann machine, learns away the nuisance variability appearing on the background

scene and the occluder, which are irrelevant with occlusions, and in turn is capable of discriminat-

ing between co-visible and occluded areas by thresholding a one-dimensional semi-metric. Our

method, combined with Superpixels [122], outperforms algorithms using features specifically en-

gineered for occlusion detection, such as optical flow, appearance, texture and boundaries. We fur-

ther challenge our framework with another Computer Vision problem, Image Segmentation from a

single frame. We cast it as binary classification too, but here we also have to deal with the intrinsic

variability of the scene objects. We perform boundary detection according to a similarity map over

all patch pairs and provide a semantic segmentation by leveraging Normalized Cuts [143].
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CHAPTER 2

An Empirical Evaluation of Current Convolutional

Architectures’ Ability to Manage Nuisance Location and Scale

Variability

2.1 Introduction

Convolutional neural networks (CNNs) are the de-facto paragon for detecting the presence of ob-

jects in a scene, as portrayed by an image. CNNs are described as being “approximately invariant”

to nuisance transformations such as planar translation, both by virtue of their architecture (the same

operation is repeated at every location akin to a “sliding window” and is followed by local pooling)

and by virtue of their approximation properties that, given sufficient parameters and transformed

training data, could in principle yield discriminants that are insensitive to nuisance transformations

of the data represented in the training set. In addition to planar translation, an object detector must

manage variability due to scaling (possibly anisotropic along the coordinate axes, yielding differ-

ent aspect ratios) and (partial) occlusion. Some nuisances are elements of a transformation group,

e.g., the (anisotropic) location-scale group for the case of position, scale and aspect ratio of the

object’s support.1 The fact that convolutional architectures appear effective in classifying images

as containing a given object regardless of its position, scale, and aspect ratio [91, 146] suggests

that the network can effectively manage such nuisance variability.

However, the quest for top performance in benchmark datasets has led researchers away from

letting the CNN manage all nuisance variability. Instead, the image is first pre-processed to yield

proposals, which are subsets of the image domain (bounding boxes) to be tested for the presence

1The region of the image the objects projects onto, often approximated by a bounding box.
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of a given class (Regions-with-CNN [60]). Proposal mechanisms aim to remove nuisance vari-

ability due to position, scale and aspect ratio, leaving a “Category CNN” to classify the resulting

bounding box as one of a number of classes it is trained with. Put differently, rather than com-

puting the posterior distribution2 with nuisance transformations automatically marginalized, the

CNN is used to compute the conditional distribution of classes given the data and a sample ele-

ment that approximates the nuisance transformation, represented by a bounding box. If the goal is

the nuisance itself (object support, as in detection [136]) it can be found via maximum-likelihood

(max-out) by selecting the bounding box that yields the highest probability of any class [60]. If

the goal is the class regardless of the transformation (as in categorization [136]), the nuisance can

be approximately marginalized out by averaging the conditional distributions with respect to an

estimation of the nuisance transformations2.

Now, if a CNN was an effective way of computing the marginals with respect to nuisance vari-

ability, there would be no benefit in conditioning and averaging with respect to (inferred) nuisance

samples. This is a direct corollary of the Data Processing Inequality (DPI, Theorem 2.8.1 in [34]).

Proposals are subsets of the whole image, so in theory less informative even after accounting for

resolution/sampling artifacts (Fig. 2.1). A fortiori, performance should further decrease if the con-

ditioning mechanism is not very representative of the nuisance distribution, as is the case for most

proposal schemes that produce bounding boxes based on adaptively downsampling a coarse dis-

cretization of the location-scale group [73]. Class posteriors conditioned on such bounding boxes

discard the image outside it, further limiting the ability of the network to leverage on side infor-

mation, or “context”. Should the converse be true, i.e., should averaging conditional distributions

restricted to proposal regions outperform a CNN operating on the entire image, that would bring

into question the ability of a CNN to marginalize nuisances such as translation and scaling or else

2One can think of the conditional distribution of a class c given an image x, p(c|x), as defined by a CNN, as the
class posterior

∫
G
p(c|x, g)dP (g|x) marginalized with respect to the nuisance group G. If the nuisances are known,

one can use the class-conditionals p(c|x, gr) at each nuisance gr ∈ G in order to approximate p(c|x) with a weighted
average of conditionals, i.e., p(c|x) ≃

∑
r p(c|x, gr)p(gr|x).

When a CNN is tested on a proposal r ⊆ x determined by a reference frame xr, it computes p(c|x|r ) (x restricted
to r), which is an approximation of p(c|x, gr). Then, explicit marginalization (assuming uniform weights) computes
1
|r|

∑
r p(c|x|r ) which is different from 1

|r|
∑

r p(c|x, gr) which in turn is different from
∑

r p(c|x, gr)p(gr|x). This
approach is therefore, on average, a lower bound on proper marginalization, and the fact that it would outperform the
direct computation of p(c|x) is worth investigating empirically.

9



go against the DPI. In this paper we test this hypothesis, aiming to answer to the question: How

effective are current CNNs to reduce the effects of nuisance transformations of the input data, such

as location and scaling?

To the best of our knowledge, this has never been done in the literature, despite the keen

interest in understanding the properties of CNNs [63, 160, 126, 145, 160, 179, 182] following their

empirical success. We are cognizant of the dangers of drawing sure conclusions from empirical

evaluations, especially when they involve a myriad of parameters and exploit training sets that can

exhibit biases. To this end, in Sect. 2.2 we describe a testing protocol that uses recognized existing

modules, and keep all factors constant while testing each hypothesis.

2.1.1 Contributions

We first show that a baseline (AlexNet [91]) with single-model top-5 error of 19.96% on ImageNet

2014 Classification slightly decreases in performance (to 20.41%) when constrained to the ground-

truth bounding boxes (Table 2.1). This may seem surprising at first, as it would appear to violate

Theorem 2.6.5 of [34] (on average, conditioning on the true value of the nuisance transformation

must reduce uncertainty in the classifier). However, note that the restriction to bounding boxes

does not just condition on the location-scale group, but also on visibility, as the image outside the

bounding box is ignored. Thus, the slight decrease in performance measures the loss from discard-

ing context by ignoring the image beyond the bounding box. When we pad the true bounding boxes

with a 10-pixel rim, we show that, conditioned on such “ground-truth-with-context” indeed does

decrease the error as expected, to 17.65%. In Fig. 2.1 we show the classification performance as a

function of the rim size all the way to the whole image for AlexNet and VGG16 [146]. A 25% rim

yields the lowest top-5 errors on the ImageNet validation set for both models. This also indicates

that the context effectively leveraged by current CNN architectures is limited to a relatively small

neighborhood of the object of interest.

The second contribution concerns the proper sampling of the nuisance group. If we interpret

the CNN restricted to a bounding box as a function that maps samples of the location-scale group

to class-conditional distributions, where the proposal mechanism down-samples the group, then

10



Method AlexNet VGG16

Whole image 19.96 13.24

Ground-Truth Bounding Box (GT) 20.41 12.44

Isotropically Anisotropically Isotropically Anisotropically

GT padded with 10 px 17.66 17.65 10.91 10.30

Ave-GT, 4 domain sizes (padded with [0,30] px) 15.96 16.00 9.65 8.90

Ave-GT, 8 domain sizes (padded with [0,70] px) 14.43 14.22 8.66 7.84

Table 2.1: AlexNet’s and VGG16’s top-5 error on the ImageNet 2014 classification challenge when the

ground-truth localization is provided, compared to applying the model on the entire image. We pad the

ground truth with various rim sizes both isotropically and anisotropically. Then we show how averaging the

class posteriors performs when applying the network on concentric domain sizes around the ground truth.

classical sampling theory [141] teaches that we should retain not the value of the function at the

samples, but its local average, a process known as anti-aliasing. Also in Table 2.1, we show

that simple uniform averaging of 4 and 8 samples of the isotropic scale group (leaving location

and aspect ratio constant) reduces the error to 15.96% and 14.43% respectively. This is again

unintuitive, as one expects that averaging conditional densities would produce less discriminative

classifiers, but in line with recent developments concerning “domain-size pooling” [43].

To test the effect of such anti-aliasing on a CNN absent the knowledge of ground truth object lo-

cation, we follow the methodology and evaluation protocol of [54] to develop a domain-size pooled

CNN and test it in their benchmark task of wide-baseline correspondence of regions selected by

a generic low-level detector (MSER [115]). Our third contribution is to show that this procedure

improves the baseline CNN by 5–15% mean AP on standard benchmark datasets (Table 2.3 and

Fig. 2.6 in Sect. 2.2.2).

Our fourth contribution goes towards answering the question set forth in the preamble: We

consider two popular baselines (AlexNet and VGG16) that perform at the state-of-the-art in the

ImageNet Classification challenge and introduce novel sampling and pruning methods, as well as

an adaptively weighted marginalization based on the inverse Rényi entropy. Now, if averaging the

conditional class posteriors obtained with various sampling schemes should improve overall per-
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formance, that would imply that the implicit “marginalization” performed by the CNN is inferior

to that obtained by sampling the group, and averaging the resulting class conditionals.2 This is in-

deed our observation, e.g., for VGG16, as we achieve an overall performance of 8.01%, compared

to 13.24% when using the whole image (Table 2.2). There are, however, caveats to this answer,

which we discuss in Sect. 2.10.

Our fifth contribution is to actually provide a method that performs at the state of the art in the

ImageNet Classification challenge when using a single model. In Table 2.2 we provide various

results and time complexity. We achieve a top-5 classification error of 15.82% and 8.01% for

AlexNet and VGG16, compared to 17.55% and 8.85% error when they are tested with 150 regularly

sampled crops [146], which corresponds to 9.9% and 9.4% relative error reduction, respectively.

Data augmentation techniques such as scale jittering and an ensemble of several models [68, 146,

158] could be deployed along with our method.

The source code implementing our method and the scripts necessary to reproduce the evalua-

tion are available at http://vision.ucla.edu/˜nick/proj/cnn_nuisances/.

2.1.2 Related work

The literature on CNNs and their role in Computer Vision is rapidly evolving. Attempts to under-

stand the inner workings of CNNs are being conducted [26, 63, 160, 99, 126, 145, 160, 179, 182],

along with theoretical analysis [6, 20, 32, 150] aimed at characterizing their representational prop-

erties. Such intense interest was sparked by the surprising performance of CNNs [26, 39, 60, 67,

68, 91, 135, 138, 146, 158] in Computer Vision benchmarks [136, 48], where many couple a pro-

posal scheme [3, 21, 29, 47, 73, 75, 90, 111, 132, 164, 192] with a CNN. As our work relates to a

vast body of work, we refer the reader to references in the papers that describe the benchmarks we

adopt, namely [26], [91] and [146].

Bilen et. al. [17] explored the idea of introducing proposals in classification. However, their

approach leveraged on a significantly larger number of candidates and used sophisticated classifiers

and post-normalization of class posteriors. Our method selects a very small subset of the most

discriminative candidates among generic object proposals, while building on popular CNN models.

12
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2.2 Experiments

2.2.1 Large-scale Image Classification

What if we trivialize location and scaling? First, we test the hypothesis that eliminating the

nuisances of location and scaling by providing a bounding box for the object of interest will im-

prove the classification accuracy. This is not a given, for restricting the network to operate on a

bounding box prevents it from leveraging on context outside it. We use the AlexNet and VGG16

pre-trained models, which are provided with the MatConvNet open source library [165], and test

their top-1 and top-5 classification errors on the ImageNet 2014 classification challenge [136]. The

validation set consists of 50, 000 images, where at each of them one “salient” class is annotated

a priori by a human. However, other ImageNet classes appear in many of the images, which can

confound any classifier.

We test the classifier in various settings (Table 2.1); first, by feeding the entire image to it

and letting the classifier manage the nuisances. Then we test the ground-truth annotated bounding

box and concentric regions that include it. We try both isotropic and anisotropic expansion of the

ground-truth region. We observe similar behavior, which is also consistent for both models.

Only for AlexNet at Table 2.1 using the object’s ground-truth support performs slightly worse

than using the whole image. After we pad the object region with a 10-pixel rim, the top-5 classi-

fication error decreases fast. However, there is a trade-off between context and clutter. Providing

too much context has diminishing returns. In Fig. 2.1 we show how the errors vary as a function

of the rim size around the object of interest. Performance starts dropping down when we add more

than 25% rim size. This padding gives 15.08% and 8.37% top-5 error for AlexNet and VGG16, as

opposed to 19.96% and 13.24% respectively, when classifying the whole image.

To ensure that this improvement is not due to downsampling, we repeat the experiment with

fixed resolution for the whole image and every subregion. We achieve this by shrinking each region

with the same downsampling factor that we apply to the whole image to pass to the CNN. Finally

we rescale the downsampled region to the CNN input. These results appear with the label “same

resolution” in Fig. 2.1.
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Figure 2.1: The top-1 and top-5 classification errors in ImageNet 2014 as a function of the rim size for

AlexNet (above) and VGG16 (below) architecture. A 0 rim size corresponds to the ground-truth bounding

box, while 1 refers to the whole image. A relatively small rim around the ground truth provides the best

trade-off between informative context and clutter.
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Finally, we apply domain size average pooling on the class posterior (i.e., the network’s softmax

output layer) with 4 and 8 domain sizes that are concentric with the ground truth. The added rim has

the declared size either at both dimensions (for the anisotropic case) or only along the minimum

dimension (for the isotropic case), and it is uniformly sampled in the range [0, 30] and [0, 70],

respectively. The latter one further reduces the top-5 error to 14.22% for AlexNet, which is lower

than any single domain size (cf. Fig. 2.1). This suggests that explicitly marginalizing samples can

be beneficial. Next we test whether the improvement stands when using object proposals.

Introducing object proposals. We deploy a proposal algorithm to generate “object” regions

within the image. We use Edge Boxes [192], which provide a good trade-off between recall and

speed [73].

First, we decide the number of proposals which will provide a satisfactory cover for the ma-

jority of objects present in the dataset. In a single image we search for the highest Intersection

over Union (IoU) overlap between the ground-truth region and any proposed sample and in turn

we evaluate the network’s performance on the most overlapping sample. We repeat this process

for various number of proposals N in a small subset of validation set and finally choose N = 80,

which provides a satisfactory trade-off between classification performance and computational cost.

The procedure is described in detail in Section 2.4.

Among the extracted proposals, we choose the most informative subset for our task, based on

pruning criteria that we introduce below. Next we discuss what other samples we use, which are

also drawn in Fig. 2.2.

Domain-size pooling and regular crops. We investigate the influence of domain-size pooling

at test time both as stand-alone technique and as additional proposals for the final method which

is described in Algorithm 1. We deploy domain-size aggregation of the network’s class posterior

over D sizes that are uniformly sampled in the range [r, 1], where 1 is the normalized size of the

original image. After parameter search, we choose D = 5 and r = 0.6. We use both the original

and the horizontally flipped area, which gives 10 samples in total.

Finally, we use standard data augmentation techniques from the literature. As customary, the

image is isotropically rescaled to a predefined size, and then a predetermined selection of crops is
15



Figure 2.2: Visualizing different sampling strategies. Upper left: Object proposals. Generic proposals

using Edge Boxes [192]. Upper right: Concentric domain sizes are centered at the center of the image.

Below: Regular crops [91, 146, 158]. This is an ILSVRC example where the object proposals help the

classifier to recognize the bearskin cap, as opposed to multi-crop augmentation.

extracted [91, 146, 158] or the network is applied densely and a class score map over the whole

image is extracted [138, 146]. We compare our method with the multi-crop strategies which have

been shown to perform marginally better compared to dense processing [146].

Pruning samples. Continuing to sample patches within the image has diminishing return in

terms of discriminability, while including more background patches with noisy class posterior

distribution. We adopt an information-theoretic criterion to filter the samples that we use for the

subsequent approximate marginalization.

For each candidate proposal n ∈ N we evaluate the network and take the normalized softmax

output vn ∈ RC , where vni ∈ [0, 1], i = {1, . . . , C} and C = 1, 000 on ILSVRC classification. The

output is a set of non-negative numbers which sum up to 1. We can interpret the vector vn as a

probability distribution on the discrete space of classes {1, . . . , C} and compute the Rényi entropy

as Hα(v
n) = 1

1−α
log(

∑C
i=1(v

n
i )

α).
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Ground truth: bolo tie, bolo, bola tie, bola
Lowest entropy proposal (blue): bolo tie, bolo, bola tie, bola (452), score 0.979

Highest entropy proposal (red): remote control, remote (762), score 0.058
Whole image: combination lock (508), score 0.161
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Figure 2.3: An ILSVRC image where the network is not confident and wrong when it is conditioned on the

whole image, while the lowest entropy posterior makes the prediction correct with high confidence.

Our conjecture is that more discriminative class distributions tend to be more peaky with less

ambiguity among the classes, and therefore lower entropy. In Fig. 2.3 we show an ILSVRC ex-

ample where the proposal with the lowest-entropy posterior is classified correctly and with high

confidence as opposed to conditioning the prediction on the whole image. In Fig. 2.4 we show how

selecting a subset of image patches whose class posterior has lower entropy improves classification

performance.
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Figure 2.4: We show the top-5 error as a function of the number of proposals we average to produce

the final posterior. Samples are generated with Algorithm 1 and classified with AlexNet. The blue curve

corresponds to selecting samples with the lowest-entropy posteriors. We compare our method with simple

strategies such as random selection, ranking by largest-size or highest confidence of proposals. The random

sample selection was run 10 times and we visualize the estimated 99.7% confidence intervals as error-bars.

We observe that the discriminative power of the classifier clearly increases when the samples are selected

with the least Rényi entropy criterion.

We extract N candidate object proposals3 [192] and evaluate the network for both the original

candidates and their horizontal flips. Then we keep a small subset E, whose posterior distribution

has the lowest entropy. We use Rényi entropy with relatively small powers (α = 0.35), as we

found that it encourages selecting regions with more than one highly-confident candidate object.

While the parameter α increases, the entropy is increasingly determined by the events of highest

probability. Larger α would be more effective for images with a single object, which is not the

case in most images in ILSVRC.

Finally we introduce a weighted average of the selected posteriors as
∑

r p(c|x|r)p(x|r), where

x|r is the support of sample r and p(x|r) is the weight of its posterior2. We try both uniform weights

and weights proportional to the inverse entropy of the posterior p(c|x|r). The latter is expected to

perform better, as it naturally gives higher weight to the most discriminative samples.

3We introduce a prior encouraging the largest proposals among the ones that the standard setting in [192] would
give. To this end, we generate 200 proposals and keep the N = 80 largest ones (see Algorithm 1).
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Algorithm 1 Regular & adaptive sampling in classification.

• Object proposals. We extract several object proposals from the image x (e.g., 200 Edge Boxes

[192] and keep the N largest ones). Among them we choose E proposals whose class posterior

has the lowest Rényi entropy with parameter α. After hyper-parameter search, we choose N =

80, E = 12 and α = 0.35.

• D concentric domain sizes around the center of x (including their horizontal flip). We use 5

sizes that are uniformly extracted in the normalized range [0.6, 1], where 1 corresponds to the

whole image (D = 10).

• C crops. Regular crops; e.g., C = 10 or C = 50 in 1 or 3 scales, as in [91, 146, 158].

• The class conditionals are approximated as
∑

r p(c|x|r)p(x|r), where p(x|r) is either uniform

or equals to the inverse entropy of the posterior p(c|x|r).

All regular and adaptive sampling components are summarized in Algorithm 1 and are drawn

in Fig. 2.2. These E proposals are classified by a Convolutional Neural Network and the multiple

outputs are averaged element-wise in order to extract a single vector (of size 1, 000×1 for Imagenet

classification), which is our class posterior for the whole image.

Comparisons. To compare various sampling and inference strategies, we use the AlexNet and

VGG16 models. All classification results in Table 2.2 refer to the validation set of the ILSVRC

2014 [136], except for the last row which demonstrates results on the test set. On the rows 2–5 we

show the performance of popular multi-crop methods [91, 146, 158]. Then we compare them with

strategies that involve concentric domain sizes (rows 6–8) and object proposals (rows 9–16).

Before extracting the crops and in order to preserve the aspect ratio of each single image, we

rescale it so that its minimum dimension is 256. The proposals are extracted at the original image

resolution and then they are rescaled anisotropically to fit the model’s receptive field. Additionally,

some multi-crop algorithms resize the image in S different scales and then sample C patches of

fixed size 224 × 224 densely over the image. Szegedy et al. [158] use S = 4 scales and C = 36

crops per scale, which yields 144 patches in all. Following the methodology from Simonyan et al.

[146], it is comparable to deploy S = 3 scales and extract C = 50 crops per scale (5 × 5 regular
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Method AlexNet VGG16
eval-S ave-S

# crops # sizes # proposals top-1 top-5 t (103s) top-1 top-5 t (103s)

− D = 1 − 43.00 19.96 0.5 33.89 13.24 2.8 1 1

C = 10 − − 41.50 18.69 3.1 27.55 9.29 24 10 10

C = 50 − − 41.01 18.05 33 27.44 9.12 67 50 50

C = 10× 3 − − 40.58 17.97 7.9 27.23 8.88 63 30 30

C = 50× 3 − − 40.41 17.55 41 27.14 8.85 174 150 150

− D = 10 − 40.00 17.86 3.8 28.16 9.46 30 10 10

C = 10 D = 10 − 39.38 17.08 11 26.94 8.83 54 20 20

C = 10× 3 D = 10 − 39.36 17.07 23 26.76 8.68 94 40 40

− − E = 40 40.18 17.53
63

25.60 8.24
151

160 40

C = 10 − E = 20 38.91 16.63 25.28 7.91 170 30

− D = 10 E = 12 38.05 16.19
67

25.19 8.11
219

170 22

C = 10 D = 10 E = 12 37.69 15.83 25.11 8.01 180 32

C = 10 D = 10 E = 12 (fast) 37.71 15.88 47 25.12 8.08 185 180 32

− D = 10 E = 12 (W) 37.98 16.12
64

25.23 8.10
190

170 22

C = 10 D = 10 E = 12 (W) 37.57 15.82 25.11 8.02 180 32

C = 10 D = 10 E = 12 (test) 37.417 16.018 − 25.117 7.909 − 180 32

Table 2.2: Top-1 and top-5 errors on the ImageNet 2014 classification challenge. The rows 2–5 include

customary data augmentation strategies in the literature [91, 146, 158] (i.e., regular sampling). The next

three rows use concentric domain sizes that are uniformly sampled in the range [0.6, 1] with 1 being the

normalized size of the original image (cf. Fig. 2.2). In the rest of the rows we introduce adaptive sampling,

which consists of a data-driven object proposal algorithm [192] and an entropy criterion to select the most

discriminative samples on the fly based on the extracted class posterior distribution. ‘W’ denotes the methods

that use weighted marginalization (rows 14 and 15). The last row shows results on the test set. #eval stands

for the number of samples that are evaluated for each method, while #ave is the number of samples that are

eventually element-wise averaged to produce one single vector with class confidences. The previous top-

performing techniques with regular sampling and our results are shown in bold. In specific, we emphasize

our top-performing method in the validation and its corresponding entry on the test set.
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grid with flips), for a total of 150 crops over 3 scales (row 5 in Table 2.2).

The results, presented in Table 2.2, indicate as expected that scale jittering at test time improves

the classification performance for both 10-crop and 50-crop strategies. Additionally, the 50-crop

strategy is better than the 10-crop strategy for both models. The results on row 5 in bold are the

lowest errors that can be achieved with these specific single models4 using only regular crops.

Then we present our methods and observe that using the AlexNet network with D = 10 con-

centric domain sizes outperforms most multi-crop algorithms even if it only evaluates and averages

10 patches. Furthermore, combining it with 10 common crops achieves the best results for both

networks, even without using 3-scale jittering. One interpretation for these improvements is that

the concentric samples serve a natural prior for the majority of ILSVRC images, i.e., the object of

interest lies most probably at the center than at the image boundaries. This is a common assumption

in the literature that also appears in large-scale video segmentation [89].

Following, we introduce the adaptive sampling mechanism with Algorithm 1 and reduce the

top-5 error to 15.83% and 8.01% for AlexNet and VGG16 respectively. To set this in perspec-

tive, Krizhevsky et al. [91] report 16.4% top-5 error when they combine 5 models. We improve

this performance with one single model. The relative improvement for the deployed instances of

AlexNet and VGG16, compared to the data-augmentation methods used in [146, 158], is 9.9% and

9.4%, respectively. Rows 14 and 15 show results where the marginalization is weighted based on

the entropy (notated as W ), in contrast to methods that appear in rows 9–13, which use uniform

weights (cf. Algorithm 1). At the last row we show results from the ILSVRC test server for our

top-performing method (row 12).

We evaluate our method also with an instance of googLeNet [158]. We deploy the Princeton

version of the model which is provided by Matconvnet. This instance does not achieve the top-

performing results reported in [158], as a simpler training process is followed. Nevertheless our

4Specifically, we use the VGG16 model which is trained without scale jittering at training and appears on the first
row of D area in Table 3 in [146]. Pre-trained models for both AlexNet and VGG16 are publicly available with the
MatConvNet toolbox [165]. Simonyan et al. in their evaluation with 50 crops and 3 scales report 8.6% top-5 error
on ImageNet 2014 validation. In contrast our implementation produces 8.85%, which can be attributed to using a
different pre-trained model, as the initial weights are sampled from a zero-mean Gaussian distribution with standard
deviation 0.01 and there might also be minor differences in the training process.
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Figure 2.5: Classification error as a function of the IoU error between the objects and the regular and

concentric crops.

primary focus is in the relative improvements compared to the baselines. We evaluate it using the

whole images, with standard 50-crop augmentation at 3 scales [146] and using our top-performing

variant; the top1/top5 error is 33.39/12.36, 30.86/10.70 and 29.22/9.67, respectively. Thus, we

have 9.6% relative top5 error reduction compared to using 50× 3 crops.

Regular and concentric crops assume that objects occupy most of the image or appear near the

center. This is a known bias in the ImageNet dataset. To analyze the effect of adaptive sampling,

we calculate the intersection over union error between the objects and the regular and concentric

crops, and show in Fig. 2.5 the performance of various methods as a function of the IoU error. The

improvement of using adaptive sampling (via proposals) over only regular and concentric crops is

increased as IoU error grows, indicating that objects occupy less domain or are far away from the

center.

Time complexity. In Table 2.2 we show the number of evaluated samples (#eval) and the subset

that is actually averaged (#ave) in order to extract a single class posterior vector. The sequential

time needed for each method is linear to the number of evaluated patches #eval. We run the

experiments with the MatConvNet library and parallelize the load for VGG16 so that the testing
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is done in batches of B = 20 patches. We report the time profile5 for each method in Table 2.2.

A few entries cover two boxes, as their methods are evaluated together. Extracting the proposals

is not a major bottleneck if using an efficient algorithm [73], such as Edge Boxes [192]. In row

13 we report results of our faster version, where the Edge Boxes do not leverage edge sharpening

and use one decision tree. Overall, compared to the 150-crop strategy, the object proposal scheme

introduces only marginal computational overhead.

2.2.2 Wide-Baseline Correspondence

We test the effect of domain-size pooling in correspondence tasks with a convolutional architecture,

as done by [43] for SIFT [107], using the datasets and protocols of [54]. This is illustrated in

Fig. 2.2 (upper right), but here the domain sizes are centered around the detector. We expect

that such averaging will increase the discriminability of detected regions and in turn the matching

ability, similar to the benefits that we see on the last rows of Table 2.1.

We use maximally-stable extremal regions (MSER) [115] to detect candidate regions, affine-

normalize them, align them to the dominant orientation, and re-scale them for head-to-head com-

parisons. For a detected scale σ at each MSER, the DSP-CNN samples D domain sizes within a

neighborhood [λ1σ, λ2σ] around it, computes the CNN responses on these samples and averages

the posteriors. The deployed deep network is the unsupervised convolutional network proposed

by [54], which is trained with surrogate labels from an unlabeled dataset (see the methodology in

[44]), with the objective of being invariant to several transformations that are commonly observed

in images captured from different viewpoints. As opposed to network-classifiers, here the task is

correspondence and the network is purely a region descriptor, whose last two layers (3 and 4) are

the representations.

In Fig. 2.6 (left) we show the comparison between CNN and DSP-CNN on Oxford dataset

[119]. CNN’s layer 4 is the representation for each MSER and DSP-CNN simply averages this

layer’s responses for all D domain sizes. We use λ1 = 0.7, λ2 = 1.5 and D = 6 sizes that are

uniformly sampled in this neighborhood. There is a 15.1% improvement based on the matching

5We use a machine equipped with a NVIDIA Tesla K80 GPU, 24 Intel Xeon E5 cores and 64G RAM memory.
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Figure 2.6: Head to head comparison between CNN and DSP-CNN on the Oxford [119] (left) and Fischer’s

[54] (center) datasets. The layer-4 features of the unsupervised network from [54] are used as descriptors.

The DSP-CNN outperforms its CNN counterpart in terms of matching mAP by 15.1% and 5.0%, respec-

tively. Right: DSP-CNN performs comparably to the state-of-the-art DSP-SIFT descriptor [43].

Method Dim mAP

Raw patch 4,761 34.79

SIFT [107] 128 45.32

DSP-SIFT [43] 128 53.72

CNN-L3 [54] 9,216 48.99

CNN-L4 [54] 8,192 50.55

DSP-CNN-L3 9,216 52.76

DSP-CNN-L4 8,192 53.07

DSP-CNN-L3-L4 17,408 53.74

DSP-CNN-L3 (PCA128) 128 51.45

DSP-CNN-L4 (PCA128) 128 52.33

DSP-CNN-L34 (concat. PCA128) 256 52.69

Table 2.3: Matching mean average precision for different approaches on Fischer’s dataset [54].
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mean average precision.

Fischer’s dataset [54] includes 400 pairs of images, some of them with more extreme transfor-

mations than those in the Oxford dataset. The types of transformations include zooming, blurring,

lighting change, rotation, perspective and nonlinear transformations. In Fig. 2.6 (center) and Ta-

ble 2.3 we show comparisons between CNN and DSP-CNN for layer-3 and layer-4 representations

and demonstrate 7.7% and 5.0% relative improvement. We use λ1 = 0.5, λ2 = 1.4 and D = 10

domain sizes. These parameters are selected with cross-validation. In Table 2.3 we show compar-

isons with baselines, such as using the raw data and DSP-SIFT [43]. After fine parameter search

(λ1 = 0.5, λ2 = 1.24) and concatenating the layers 3 and 4, we achieve state of the art performance

as shown in Fig. 2.6 (right), observing though the high dimensionality of this method compared to

local descriptors.

Given the inherent high-dimensionality of CNN layers, we perform dimensionality reduction

with principal component analysis to investigate how this affects the matching performance. In

Table 2.3 we show the performance for compressed layer-3 and layer-4 representations with PCA

to 128 dimensions and their concatenation. There is a modest performance loss, yet the compressed

features outperform the single-scale features by a large margin.

2.3 Comparison between Marginalization and Max-out

In the task of classification, nuisance variability of factors such as translation, scale and aspect

ratio is explicitly handled by the use of crops, concentric domains and proposals. Each of them

represents an element g in the nuisance group G. Conditioned on g, a “Category” convolutional

neural network returns a conditional posterior probability of the learned classes, p(c|x, g) where x

is the test image. To obtain a prediction independent of the nuisance G, one can either marginalize

p(c|x) =
∫

p(c|x, g)dP (g), (2.1)

and extract the classes c with maximum posterior or max-out

ĉ = argmax
g,c

p(c|x, g). (2.2)

over all possible elements g and classes c.
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The former has been extensively evaluated in Section 2.2.1. The latter has an additional benefit

that allows to identify the nuisance element g which corresponds to the predicted class c via

ĝ = argmax
g

p(c|x, g). (2.3)

This helps to “localize” the object(s) of interest up to translation, scale and aspect ratio changes

that are modeled by G. In this section, we evaluate the performance of max-out on the ILSVRC

benchmark using again the same networks (AlexNet and VGG) as in Section 2.2.1.

As a comparison, we use the same number of crops, concentric domains and proposals as in

row 12 of Table 2.2 (C = 10, D = 10 and E = 12). Instead of averaging the conditional posteriors,

we find the maxima according to Eq. 2.2. Max-out achieves a top-1 error 40.22% and a top-5 error

17.44%. In Fig. 2.7, we show in blue lines the indices of images on which marginalization predicts

the class label correctly but max-out does not, and in green lines the indices of images on which

max-out wins. After inspecting the images where max-out fails, we observe that some of the

failure cases are caused by the fact that ILSVRC only allows one class annotation while regions of

proposals can contain other objects that are not considered the “ground-truth” class.

0 1 2 3 4 5
Image Index ×10

4

Figure 2.7: Comparison between Marginalization and Max-out. Blue lines show the images on which

marginalization predicts the class label correctly but max-out does not. Green lines show the opposite.
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2.4 Choosing the number of proposals

In Section 2.2.1 we describe that we use Edge Boxes [192] to generate object proposals, since

they provide a good trade-off between recall and speed [73]. Here we describe the process that we

followed to choose the hyper-parameter N which is the number of candidate proposals.

We use the ILSVRC validation set, where the ground-truth bounding box is given, and we run

the proposal algorithm for various values N . Every time we search among all N proposals for the

one with the highest overlap with the ground truth and evaluate the network’s performance on this

region. We use different values of N , and two criteria to define the overlap: at the first five rows in

Table 2.4 we use the Intersection over Union (IoU), which is the standard overlap metric in Pascal

VOC, and at the last row we select the smallest-area box that completely contains the ground truth

region in R2.

In Table 2.4 we show that using bigger values of N yields larger maximum overlap with the

Criterion Proposals top-1 error top-5 error

highest IoU with the GT 10 39.49 16.09

highest IoU with the GT 20 38.97 15.41

highest IoU with the GT 40 38.25 15.00

highest IoU with the GT 100 37.73 14.63

highest IoU with the GT 200 37.83 14.69

Smallest bb around the GT 200 38.51 15.26

Table 2.4: Evaluation of the proposed Edge Boxes by calculating the classification performance when the

ground truth is known and the best available bounding box is selected accordingly. We use the Intersection-

over-Union (IoU) as overlap criterion. More Edge Boxes provide as expected better cover of ground-truth

objects and subsequently higher classification accuracy. However, they add computational overhead to our

algorithm, which is linear to the number of proposals. On the last row we use a slightly different selection

criterion, i.e., the smallest bounding box that encloses the ground-truth region. If there is no such proposal,

we choose the whole image. This criterion yields higher error.
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ground truth and subsequently a higher classification accuracy, as we would expect. Using more

than 100 proposals seems to give no more benefits, aside the computational cost which is linear to

the number of proposals. The number in Table 2.4 are not directly comparable with the statistics in

the rest of the paper, because they are produced in a subset of validation set (first 2, 000 images) but

nevertheless they give an estimation for our algorithm. In the last row we see that the alternative

criterion gives inferior performance for the same number of proposals (N = 200).

Since the Edge Boxes are not tuned for the categorization task, we noticed that introducing a

prior toward larger regions improves the performance. In practice we extract 200 proposals per

image and we keep the N = 80 largest ones. Nevertheless, our method is not dependent on

specific proposal method and we expect that parameter tuning in the proposal algorithm could

further improve the classification accuracy end-to-end.

2.5 CNN vs. DSP-CNN while varying the object scale and context (occlu-

sions)

As shown in Table 2.2, domain-size pooling with D = 10 seems to be a good prior for Imagenet

data, as it reduces AlexNet’s top-5 classification error by 19% compared to using the whole im-

age. In Fig. 2.8 we show how DSP-CNN performs better compared to a single-domain CNN for

different domain sizes that are located around the image center. This plot suggests that leveraging

multiple domain sizes yields better performance than selecting any single domain size. DSP-CNN

is quite insensitive to marginalizing the posteriors of smaller domains, while the performance of

the single-domain model quickly degrades.

Next we compare how the single-domain CNN and DSP-CNN perform in two cases: first,

when the object of interest is rescaled and the amount of context is fixed, and second, when the

image is fixed and the amount of context varies by rescaling the input domain sizes. We show

results on the validation set of ILSVRC 2014 as in Section 2.2.1.

First, we deal exclusively with the object scale, while we fix the context level. For this task we

consider the ground-truth (gt) bounding box padded with a 50px rim as the object, as this gives
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Figure 2.8: DSP on the whole image. We show the top-1 and top-5 classification error in Imagenet 2014

using various domain sizes which are located around the image center. The single domain sizes (green

curves) are proportional to the whole image with ratio r, where r ∈ [0.4, 1]. The DSP method (blue curves)

involves averaging of the posteriors while applying the network on 10 ∗ (1 − r) domain sizes that are

uniformly sampled in the range [r, 1]. We observe that the single-scale method has a fast diminishing

accuracy when choosing smaller domain sizes, while DSP keeps yielding almost constant performance.

The local minimum for a single domain size lies on r = 0.9 with top-1 and top-5 errors of 41.57% and

18.92%, while for DSP the best accuracy appears when sampling 5 domain sizes in [0.6, 1] with 40.01%

and 17.86% errors, respectively. This empirically validates our choice of using D = 10 (5 domain sizes and

their horizontal flip) in Table 2.2. This experiment is agnostic to the location of objects within the image.

maximum classification accuracy as shown in Fig. 2.1. At the left of Fig. 2.9 we gradually shrink

the gt+50px bounding box from full scale to gt size. At the right we compare the CNN with DSP-

CNN for this range. For CNN we use the gt+50px model, which performs the best in Fig. 2.1. For

DSP-CNN we use the model that samples 8 domain sizes in the [0, 70] range, which is shown on

the last row of Table 2.1. DSP-CNN outperforms CNN, and at the same time it is more insensitive

as the object scale decreases. In the caption of Fig. 2.9 we describe the details of the evaluation.

Second, we show in Fig. 2.10 how varying the amount of context (or occlusions and clutter)
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Figure 2.9: Object scale. Left: Shrinking the object in order to investigate the classification performance

of CNN vs. DSP-CNN for various object scales. The object of interest for this task is defined as the ground-

truth bounding box with 50px rim, as this provides the top accuracy (Fig. 2.1). Therefore, the object has 50

px rim in addition to the ground-truth size at its original scale, while the values between [0, 50] pertain to its

shrunk versions. The CNN is applied on the ground truth with 50px padding, as this gives empirically the

higher classification accuracy (Fig. 2.1). Its DSP counterpart is applied on 8 domain sizes in [0, 70], as it has

been shown to be the top-performing method in Table 2.1. Right: The top-1 and top-5 classification error

in Imagenet 2014 for increasing object scale (i.e., the right value corresponds to the original scale). The

background is not changing, while the freed space between the 50px rim and the receding object boundary

is replaced by the average ILSVRC image in order to minimize any influence on the classifier. We observe

that the DSP8 is more insensitive than the CNN for diminishing object scale.

influences the classification of the object of interest. Here the image is kept fixed, while the scale

of the bounding box is changed proportionally to the ground truth. We use different domain sizes

for CNN and a range around each of these sizes for DSP-CNN. The implementation details are

described in the caption of Fig. 2.10. The samples are not augmented with horizontal flipping.

Averaging the class posteriors achieves a better trade-off between context and nuisances and in

turn produces a lower classification error.
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Figure 2.10: Occlusions. The top-1 and top-5 classification error in Imagenet 2014 for various domain

sizes around the ground truth, while the image is kept fixed. The green curves pertain to testing with a

single domain size with rim size r, while the blue curves correspond to averaging the posteriors of 8 domain

sizes in the [r − 50, r + 20] span. As for the single-scale case, this plot can be seen as a subset of Fig. 2.1,

where the local minimum is on 50px for a 15.46% top-5 error. Here we show that the DSP8 consistently

outperforms the single-scale method for various level of context (or occlusions). DSP’s local minimum is

on r = 60, i.e. averaging the posteriors of 8 domain sizes in [10, 80], which gives top-5 error of 14.11%.

This is marginally smaller than the error of DSP when it is sampled in [0, 70] (Table 2.1).

2.6 Dense testing

In this section we want to investigate whether we can incorporate our sampling technique based on

the posterior entropy in a dense testing setting and achieve performance gains in a fraction of time

compared to the adaptive sampling scheme that is decribed in Section 2.2.1.

Following [146], we convert a standard convolutional neural network (e.g. [138, 146]) with

convolutional and fully-connected layers into a fully-convolutional network. In practice [165, 79],

since both fully-connected (FC) and convolutional (CONV) layers are computed as dot products,

we can convert a FC layer to CONV either by shrinking the kernels or by providing larger feature
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maps. Effectively this can be done by using a larger input image and setting the stride as 1 in the

first FC layer. Therefore the FC kernel is computed densely like being a CONV operator and yields

several posteriors. For example assume that instead of using 227 × 227 input images, we provide

419×419 images. Then the output of first FC layer will be 7×7×4, 096 instead of 1×1×4, 096.

As we do not modify the remaining upper FC layers, they are effectively 1× 1 CONV filters with

stride 1 and depth 4, 096. Therefore, in the previous example, the network will output a 7× 7 class

score map.

On the top of the fully convolutional network we add one pooling layer in order to extract a

single class posterior for the whole image. Posterior selection can be performed based on Rényi

entropy, similarly as we did when using region proposals. Extension over scale is performed as

well. Therefore, we use various images sizes and extract posterior maps of different sizes, which

we aggregate before the entropy selection. In specific, we use image sizes 355 × 355, 419 × 419

and 483× 483, which return 5× 5, 7× 7 and 9× 9 class score maps respectively (which sum up

to 310 posteriors in total).

Method VGG16
eval-S ave-S

top-1 top-5 t(103s)

Testing with regular crops [146] 27.14 8.85 174 150 150

Dense testing [146] 27.09 8.61 21 7x7x2 7x7x2

Testing with proposals 25.11 8.01 219 180 32

Dense Selective testing (translation) 26.37 8.10 24 80 98

Dense Selective testing (translation, scale) 25.93 7.77 25 310 200

Table 2.5: Top-1 and top-5 errors on the Imagenet 2014 classification challenge [136]. The rows 1-2 show

previous methods in the literature, which serve as our baselines. Row 3 shows adaptive sampling as it is

performed in Section 2.2.1, while next we demonstrate dense testing with posterior selection over translation

(row 4) and over both translation and scale (row 5). Eval-S is the number of the evaluated posteriors and

ave-S is the posterior vectors that are eventually averaged to produce one single prediction. Dense testing

runs in a fraction of time, as several posteriors are extracted with one (or few) pass.
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The results are shown in Table 2.5. We achieve comparable performance improvements as

we received with adaptive proposal sampling in a fraction of time. The top5 error is further re-

duced, but in terms of the top1 error the adaptive sampling with proposals remains the best method.

Strictly speaking, the complexity increases linearly to the number of convolutions on first FC layer

for all testing scales and aspect ratios (plus the ratio of more CONV operations at the lower layers

which adds a constant overhead). In practice, the speedup is large compared to multi-crop and

testing with proposals, because the entire score map is computed in 1 pass (or as many passes as

the number of tested scales and aspect ratios) given that the entire model fits in the GPU.

Someone may assume that dense testing renders the need for crops moot. However, it is pos-

sible that combining dense testing with adaptive samples (proposals) could yield further improve-

ment. Additionally, the top-1 accuracy with proposals is still better than the one obtained with

dense testing. It is worthwhile to stress that when applying a ConvNet to a crop, the convolved

feature maps are padded with zeros, while in dense evaluation the padding for the same region nat-

urally comes from the neighboring pixels (due to both the convolutions and spatial pooling), which

substantially increases the effective network receptive field, and in turn the captured content.

2.7 Pascal VOC Detection

Next we perform comparisons on Pascal VOC 2007 detection challenge. Here the element of

the group transformation (bounding box) is no longer the nuisance, but the object of interest.

Therefore, we expect that averaging the class posteriors of neighboring regions will hurt the lo-

calization accuracy. However, there is a trade-off, as the domain-size pooling can improve the

discriminability around the object of interest in terms of categorization. In the following, we put

the challenge to the test. After, we show how searching the most “interesting” domain size in the

scale-neighborhood of the proposals based on the entropy of the class posteriors can improve the

detection performance end to end.

We use Regions with CNNs [60] as a baseline. This algorithm includes three main steps:

first, generic object proposals are extracted using Selective Search [164], then a CNN is used to

classify each proposal, and finally an optional regression step improves the localization of the
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Method mAP mAUC

Regions with CNNs [60] 54.16 54.30

Domain-size averaging on the proposals 41.47 40.33

Domain-size averaging with entropy selection 51.21 51.08

Domain-size selection with entropy criterion 54.36 54.70

Table 2.6: Mean Average Precision (mAP) and mean Area Under the Curve (mAUC) for R-CNN’s [60]

variants on Pascal VOC 2007.

output predictions. There are many intermediate steps that are equally important for the algorithm

to perform well, such as greedy non-maximum suppression for the candidate bounding boxes in

order to avoid duplicate predictions. We keep all factors constant and use the pre-trained models

for CNN and Support Vectors Machines, as they are provided by the authors of [60]. All variants

are compared without the optional regression step at the end. We use the test set and the evaluation

protocol of Pascal VOC 2007 challenge.

The mean Average Precision and mean Area Under the Curve achieved by [60] are shown on

the first row in Table 2.6. We attempt domain-size pooling to classify the proposals and a crite-

rion for domain size selection based on the entropy, similar in principle to the one that we use

in classification (Section 2.2.1). We experiment with each method using three domain sizes for

each proposal: the proposed bounding box with Selective Search padded with 16px as in [60] and

two concentric bounding boxes to it with 15px and 30px additional padding. On the second row

we show that domain-size average pooling lowers the average precision for detection, which is to

be expected as it hurts the localization. On the third row we average the posterior over the base

domain size and any additional domain size that has lower entropy than the base one, if any. This

is still inferior compared to using no pooling at all. These methods may help the discriminability

around the object of interest, but they deteriorate the localization accuracy and reduce the end-to-

end performance. Finally, on the forth row we show how selecting the neighbor with the lowest

entropy for each proposal improves the detection performance compared to the baseline. This is to

be expected as it can be seen as a method for refining the proposal algorithm. Although we sample
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only three elements from the scale group, our method can be easily extended to include several

samples from the location-scale or even the affine group.

2.8 Performance profile of DSP-CNN vs. CNN for wide-baseline correspon-

dence

The Fischer dataset [54] includes 400 pairs of images, some of them with more extreme transfor-

mations than those in the Oxford dataset [119]. The types of transformations include zooming,

blurring, lighting change, rotation, perspective and nonlinear transformations. In Fig. 2.11 we

present the matching performance for different magnitude of various transformations. Finally, we

show the 5 best and the 5 worst pairs (among all 400 pairs in Fischer data) in terms of DSP-CNN

vs. CNN relative performance.
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Figure 2.11: Matching mean Average Precision (mAP) for different magnitude of transformations in the

Fischer dataset. The largest benefits of deploying domain-size pooling appear for nonlinear transformations,

while there is consistent improvement for zoom, blur, perspective and rotation. Finally, as it should be

expected, this technique does not help with illumination variation. Actually, averaging the class posteriors

slightly reduces the discriminability for large lighting changes.
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nonlinear,2−−−−−−→
+11.86%

blur,4−−−−−→
+11.16%

nonlinear,2−−−−−−→
+10.24%

zoom,6−−−−→
+9.89%

nonlinear,2−−−−−−→
+9.89%

Figure 2.12: Pairs with the best improvement of DSP-CNN over CNN in Fischer data. For each

pair over the arrow we write the transformation and its corresponding maginitude. Under the arrow

is the absolute mAP increase. DSP-CNN is especially robust with non-linear local deformations.
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lighting,4−−−−−→
−12.93%

lighting,4−−−−−→
−11.69%

lighting,4−−−−−→
−5.63%

lighting,4−−−−−→
−5.40%

lighting,3−−−−−→
−4.55%

Figure 2.13: Pairs where DSP-CNN performs the worst compared to CNN in Fischer data. For

each pair over the arrow we write the transformation and its corresponding magnitude. Under the

arrow is the absolute mAP decrease. It is expected that the domain-size pooling does not help with

illumination variation, which is confirmed by Fig. 2.11.
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2.9 Extended Discussion

This section expands on the discussion of our conclusions in the previous sections.

Is a CNN really (meant to be) computing class posteriors? A CNN produces, at its penultimate

layer, just before the classifier, relative scores for each class c = [c1, . . . , cN ] in response to

a particular instance of the data I . This can be interpreted as the likelihood of each class

L(c) ∝ P (I|c). Once weighted by the prior probability of each class and normalized,

this yields the class posterior P (c|I). For the purpose of testing the hypothesis underly-

ing our investigation, which concerns the marginalization of nuisance variables, class priors

are irrelevant (since nuisances do not enter the prior), so we consider equivalently the class

likelihoods P (I|c) or class posteriors P (c|I).

Is a CNN really (supposed to be) marginalizing nuisance groups? The class posterior (or like-

lihood) links the data I to the class c. However, a class c manifests itself in the data through a

particular instance of object of class c, imaged under particular imaging conditions – includ-

ing position, scale, aspect ratio and other unknown (nuisance) variables. There is, therefore,

a Markov-chain dependency between the class c, the particular object instance, and the data

I , mediated by nuisance variables g. Since the CNN produces an estimate or approxima-

tion of P (I|c), such nuisance variability has to be managed somehow by the CNN. The key

question, then, is exactly how the CNN manages it. For planar translation, the CNN nar-

rative suggests that the structure of the network is designed to (approximately) marginalize

it, by averaging scores computed equi-variantly at each location. For everything else, the

assumption is that nuisance variability is learned away by the network through supervision

(instances that share the same class but different nuisances are labeled as the same, which

shapes the residual surface of the CNN).

What do you mean by conditionals? Posteriors? Marginals? As discussed above, the CNN re-

turns class scores, that can be interpreted as either class likelihoods or, after normalization,

class posteriors P (c|I). When referring to “conditionals” or “marginals” we always refer

to the variables of interest in this paper, that are nuisance variables. Thus, by condition-
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als we mean P (c|I, g) or P (I|c, g), where g ∈ G is the (nuisance) conditioning variable.

Similarly, by marginals, we mean the probabilities that marginalize g ∈ G, for instance

P (I|c) =
∫
G
P (I|c, g)dP (g) for a continuous group G.

Averaging scores of few crops is a lousy approximation of proper marginalization. Indeed, if

a network trained on the whole image is thought to approximate p(c|x), when tested on

a proposal r ⊆ x determined by a reference frame gr, it computes p(c|x|r) (x restricted

to r), which is different from p(c|gr, x), as correctly pointed out by the Reviewer. Then,

explicit marginalization computes 1
|r|
∑

r p(c|x|r) which is different from 1
|r|
∑

r p(c|gr, x)

which in turn is different from
∑

r p(c|gr, x)p(gr|x), which would be needed to approximate

the proper marginal p(c|x) =
∫
p(c|g, x)dP (g|x). This approach is therefore, on average,

a lower bound on proper marginalization, and the fact that it would outperform implicit

marginalization is surprising indeed and worth investigating empirically.

No conclusion in expectation can be drawn from finite sample averages. Indeed marginal-

ization entails the computation of a continuous integral, which can be only approximated by

a CNN. Nevertheless, all other factors being equal (weights of the CNN, training set, etc.),

the fact that the CNN restricted to, and average across, few bounding boxes performs better

indicates that the approximation computed by the CNN is not very effective.

Where is averaging performed to approximate marginalization? At the output of the network

(penultimate layer), so as to averaged are the class-conditional distributions.

Why averaging discriminants? That is counterproductive. Indeed, in general, averaging reduces

discriminative power, increasing false alarms. Averaging along directions spanned by nui-

sance variables, corresponding to marginalization, however, reduces sensitivity to nuisance

transformation, thus reducing missed detections. So averaging trades off discriminative

power with insensitivity to nuisance variability. Our purpose is indeed to quantify such a

tradeoff.

In practice, our results show that such averaging has negligible effects on discriminative

power. This may be due to the fact that the ambient space of most descriptors is so high-
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dimensional that even multiple categories (such as those in ImageNet) are so far from each

other that local averaging causes no false alarms. Instead, local marginalization is generally

beneficial to reduce sensitivity to nuisance factors for a constant number of training samples.

Reducing context should reduce performance. Fig. 2.1 measures the tradeoff between condi-

tioning (feeding the CNN the “true” location, scale and aspect ratio of the object of interest,

which should improve performance, by reducing the entropy of the class on average), and

context removing which should reduce performance. The fact that restricting to a bounding

box reduces performance is obvious; that this happens even with the ground truth bound-

ing box (for AlexNet) is less obvious and indicative of the trade-off between context and

nuisance variability (e.g., the classification accuracy improves 34% compared to the ground

truth for AlexNet when we pad with 50 pixels). The fact that padding the bounding box with

50 pixels improves performance by a large margin (27% compared to using the whole image

for AlexNet) is non-obvious and indicative of the inability of the CNN to capture context

beyond a few pixels.

This is not obvious as a CNN, in principle, has the ability to capture co-occurrence statis-

tics on the entire image domain, since the “receptive field” (regions of the image plane)

subtended by filters at higher layers encompass a large area of the image. However, the ex-

periments conducted indicate that the CNN is not effectively leveraging such context. This

is shown in three steps: First, the baseline performance is comparable (slightly lower for

AlexNet, slightly higher for VGG16) to restricting the image to a bounding box containing

the object of interest. Second, the baseline performance increases if the image is restricted

to the bounding box plus a small rim around it, suggesting that the network indeed can lever-

age some context. Third, continuing to increase the rim size only hurts the classification

accuracy. Fig. 2.1 shows results for different padding sizes.

Entropy reduction and mutual information between the class and the data. Throughout the pa-

per, “entropy” refers to the entropy of the posterior, that is of the class c conditioned on the

data I , H(c|I). Reduction of this conditional entropy is equivalent to an increase in mutual

information between I and c, for I(c; I) = H(c)−H(c|I).
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CNNs are not designed for wide-baseline matching. Indeed, although they have been used for

that purpose [54], so an objective benchmark is available. The deployed network is trained to

be invariant to several transformations that are commonly observed in images captured from

different viewpoints. Therefore it approximates the properties of an invariant descriptor via

learning, as opposed to networks which are trained on the classification task and aim at

grouping all instances of same classes, thus totally losing their generative power at their last

layer.

For that task, denoising auto-encoders, or RBMs, would seem better suited, and indeed have

been used to face matching tasks [157]. However, [41] shows that Gated RBMs perform

worse than local descriptors in wide-baseline matching.

How do bounding boxes define group transformations? The center of the bounding box de-

fines a position on the pixel lattice (u, v), assumed to belong to the continuum after in-

terpolation, (u, v) ∈ R2. The two sides define units around the coordinate axes (σ1, σ2),

with σ1, σ2 > 0. These four-parameters can be considered as an element of the anisotropic

location-scale group, that transforms every point on the plane x = (x1, x2) via gx = y where

y1 = σ1 + u and y2 = σ2 + v. The group has a null element u = v = 0; σ1 = σ2 = 1 and

an inverse on the real plane, regardless of whether the image is defined there: g−1(y) = x

where x1 = (y1 − u)/σ1 and x2 = (y2 − v)/σ2. The image can be extended to the plane

by zero-padding. This construction extends to rotated bounding boxes (similarity group),

parallelograms (affine) and arbitrary convex quadrilaterals (projective group). Thus, sam-

pling bounding boxes on the plane corresponds to sampling elements of one of these groups,

depending on the geometry of the bounding boxes. In our case, we are restricting ourselves

to the location-scale (anisotropic) group, hence corresponding to sampling rectangular, axis-

aligned bounding boxes.

How is averaging bounding boxes “anti-aliasing”? We use this term as characterized by [43].

Anti-aliasing generally refers to the removal of “aliases”, or spurious extrema in the signal

reconstructed from samples that are not present in the original (pre-sampling) continuous

signal. In signal processing, under the assumptions of ℓ2 integrability and (at least local)
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stationarity, so one can talk about “frequency”, anti-aliasing is usually performed by con-

volving the signal with a “low-pass” filter that removes higher frequencies thus limiting the

signal to a frequency “band”. Such convolution is a local average of samples, weighted by

a kernel that can be designed to have sharpest frequency cut-off (e.g., the sinc function), or

other criteria such as optimal trade-off between spatial and frequency support (e.g., Gaussian

kernels). In our context there is no assumption of stationarity, and we do not design the aver-

aging procedure for optimality, but instead perform local averaging with respect to a uniform

kernel, a crude version of anti-aliasing that is, however, sufficient to improve performance

thus supporting a fortiori the conclusions on its effects. Note that what is being averaged, or

anti-aliased, is not the samples from the posterior, but the posterior itself, thus this is a some-

what unusual (generalized) sampling scenario where each sample is an integrable function.

Why PCA? The reduction of dimensionality performed to compare the CNN to a small-dimensional

descriptor such as SIFT could be performed in a number of ways. PCA is the simplest, not

necessarily the best, as it does not capture the discriminative subspace, but the representative

subspace instead.

2.10 Final remarks

Our empirical analysis indicates that CNNs, that are designed to be invariant to nuisance variabil-

ity due to small planar translations – by virtue of their convolutional architecture and local spatial

pooling – and learned to manage global translation, distance (scale) and shape (aspect ratio) vari-

ability by means of large annotated datasets, in practice are less effective than a naive and in theory

counter-productive practice of sampling and averaging the conditionals based on an ad-hoc choice

of bounding boxes and their corresponding planar translation, scale and aspect ratio.

This has to be taken with the due caveats: First, we have shown the statement empirically for

few choices of network architectures (AlexNet and VGG), trained on particular datasets that are

unlikely to be representative of the complexity of visual scenes (although they may be represen-

tative of the same scenes as portrayed in the test set), and with a specific choice of parameters

made by their respective authors, both for the classifier and for the evaluation protocol. To test the
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hypothesis in the fairest possible setting, we have kept all these choices constant while comparing

a CNN trained, in theory, to “marginalize” the nuisances thus described, with the same applied to

bounding boxes provided by a proposal mechanism. To address the arbitrary choice of proposals,

we have employed those used in the current state-of-the-art methods, but we have found the results

representative of other choices of proposals.

In addition to answering the question posed in the introduction, along the way we have shown

that by framing the marginalization of nuisance variables as the averaging of a sub-sampling of

marginal distributions we can leverage of concepts from classical sampling theory to anti-alias the

overall classifier, which leads to a performance improvement both in categorization, as measured in

the ImageNet benchmark, and correspondence, as measured in the Oxford and Fischer’s matching

benchmarks.

Of course, like any universal approximator, a CNN can in principle capture the geometry of the

discriminant surface by “learning away” nuisance variability, given sufficient resources in terms

of layers, number of filters, and number of training samples. So in the abstract sense a CNN

can indeed marginalize out nuisance variability. The analysis conducted show that, at the level of

complexity imposed by current architectures and training set, it does so less effectively than ad-hoc

averaging of proposal distributions.

This leaves researchers the choice of investing more effort in the design of proposal mecha-

nisms [60], subtracting duties from the Category CNN downstream, or invest more effort in scaling

up the size and efficiency of learning algorithms for general CNNs so as to render the need for a

proposal scheme moot.
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CHAPTER 3

Boosting Convolutional Features for Robust Object Proposals

3.1 Introduction

Convolutional neural networks (CNNs), the de-facto standard for object detection in images, can

in principle manage nuisance variability due to (planar) position, scale and aspect ratio [91]. How-

ever, the quest for top performance in [136] has led researchers away from letting the CNN manage

all such variability, favoring instead split pipelines whereby the image is first pre-processed to yield

proposals, which are subsets of the image domain (bounding boxes) to be tested for the presence

of an object class by a “Category CNN.” The output of a proposal algorithm is a collection of

bounding boxes, or equivalently a sampling of the (anisotropic) translation-scale group of trans-

formations,1 each corresponding to a proposal, or hypothesis, of object.

The best proposal algorithm is the one that densely samples the group. However, even for

small-dimensional transformations such as the anisotropic translation-scale group, a single image

could yield billions of proposals. As in any sampling procedure, the goal is to trade off performance

with complexity. To this end, adaptive sampling schemes can be employed to select proposals

based on the data. Then a proposal algorithm takes as input an image, and produces as output

sample transformations, in our case bounding boxes, using a binary classifier for each value of

the transformation. Such a selection amounts to a premature decision that can only decrease the

performance in the overall task, which we accept in exchange for gains in run-time. To minimize

damage, a proposal should yield few if any missed detection (if an object is not proposed, it will

1The translation component is the center of the bounding box, and the two scales are the sides of the box. More
general groups could be considered, such as similarity, affine, or projective.
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never be found2), even if at the cost of many false alarms. In other words, the classifier is tasked

not so much with selecting regions that are highly likely to contain objects, but with discarding

as many regions as possible that, with high confidence, do not. A further caveat in developing

proposals is that the Category CNN discards the image outside the proposal window, thus possibly

forgoing side information or “context.”

Since a proposal algorithm involves the design of a classifier, whose results are to be fed to

another classifier (a Category CNN), it seems natural to want to leverage on the latter to design

the former. For instance, if the Category CNN computes a multi-class posterior with pose, scale

and aspect-ratio marginalized, we could recycle its powerful components to produce a binary dis-

tribution (object vs. not) for a given pose, scale and aspect ratio, by marginalizing the classes.

This is done simply by feeding the image restricted to each sample transformation (a bounding

box) to the Category CNN, followed by averaging. This raises a conundrum: If the Category CNN

could indeed marginalize them, conditioning on (estimated) transformations would be detrimental,

a consequence of the Data Processing Inequality [34]. The fact that Regions-with-CNN pipelines

outperform CNNs alone suggests that the latter may not be as effective at marginalizing nuisances,

which has been also shown by Karianakis et al. [85]. If we accept this as a fact, then most of

the effort should focus on the proposal algorithm, since that is tasked with removing the most

challenging variability in visual data [155, 130]. This is what we do.

We introduce a proposal scheme (Fig. 3.1) that employs features already learned by a Category

CNN to design a boosting binary classifier that labels bounding boxes sampled densely in loca-

tion, and coarsely in scale and aspect ratio, as “object” or “background” (Sect. 3.2). We further

apply linear regression to refine the location of the top-scoring bounding boxes. In Sect. 3.3 we

benchmark our scheme against several proposal algorithms, using standard evaluation protocols,

in both performance and computational cost. We also test our scheme on an end-to-end task us-

ing ImageNet’s localization challenge [136], by swapping a state-of-the-art proposal scheme with

ours, with measurable improvements.

2For instance, Selective Search proposes on average 2, 403 regions per image in [60] with 91.6% recall, meaning
that even with an oracle detection algorithm, 8% of all object instances would go undetected.
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Figure 3.1: Processing pipeline for boosting convolutional features. Regions corresponding to objects

and background are extracted from training images. Convolutional responses from first layers of a Proposal

CNN are used to describe these patches, and fed to a boosting model to learn an object/background classifier.

Finally a Category CNN is employed to classify each proposal into one of many object categories.

3.1.1 Prior work

We briefly review some representative methods which are evaluated in detail in [73].

Selective Search [164], which is currently the most popular algorithm, has its features and score

functions engineered on Pascal VOC [48] and ILSVRC [136] so that low-level superpixels [51] are

gradually merged to represent high-level objects in a greedy fashion. It achieves very high localiza-

tion accuracy due to the initial over-segmentation at a time overhead. RandomizedPrim’s [111] is

similar to Selective Search in terms of features and the process of merging superpixels. However,

the weights of the merging function are learned and the whole merging process is randomized.

There is a family of algorithms which invest significant time in a good high-level segmenta-
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tion. Constrained Parametric Min-Cuts (CPMC) [21] generates a set of overlapping segments.

Each proposal segment is the solution of a binary segmentation problem. Up to 10, 000 segments

are generated per image, which are subsequently ranked by objectness using a trained regressor.

Rantalankila et al. [133], similar in principle to [164] and [21], merge a large pool of features in

a hierarchical way starting from superpixels. It generates several segments via seeds like CPMC

does. Endres et al. [46] combine a large set of cues and deploy a hierarchical segmentation scheme.

Additionally, they learn a regressor to estimate boundaries between surfaces with different orien-

tations. They use graph cuts with different seeds and parameters to generate diverse segments

similar to CPMC. Multiscale Combinatorial Grouping (MCG) [10] combines efficient normalized

cuts and CPMC [21] and achieves competitive results within a reasonable time budget.

In the literature several methods attempt to quantify Objectness [3, 132] based on a combination

of saliency, color contrast, edge density, location and size statistics, and the overlap of proposed

regions with superpixels. Data-driven Objectness [84] is a practical method where the likelihood of

an image corresponding to a scene object is estimated through comparisons with large collections

of example object patches.

Binarized Normed Gradients for Objectness (BING) [29] is a simple linear classifier over edge

features and is used in a sliding window manner. In stark contrast to most other methods, BING

takes on average only 0.2s per image on a CPU. EdgeBoxes [192] is similar in spirit to BING:

A scoring function is evaluated in a sliding window manner, with object boundary estimates and

features which are obtained via structured decision forests.

Scalable, High-quality Object Detection [159] is also data driven, as an evolution of [47] that

integrates region proposals and classification in one step. By deploying an ensemble of models

with robust loss function and their newly introduced “contextual features”, they achieve state-of-

the-art performance on the detection task.

3.2 Methodology

Features and Boosting: We use binary boosting to train a classifier with output yi ∈ {1,−1}

(object/background) for each image patch i ∈ {1, . . . , N}. The input samples xi are feature vectors
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which describe an image patch i. The features xi are a subset of convolutional responses conv
kj
j

from a Proposal CNN (cf. Fig. 3.1), where j pertains to convolutional layer j ∈ {1, . . . , L}

and kj spans the number of feature maps for this layer (e.g., alexNet [91] uses L = 5 and k1 ∈

{1, . . . , 96}). Our Proposal CNN is the VGGs model from [26], whose first-layer convolutional

responses are 110× 110 pixels, double the resolution of alexNet.

Aggregate-channel features from [38] are used, where convolutional responses serve the role

of channels, while we deploy a modified version of the fast setting provided by [9]. Thus, efficient

AdaBoost [167] is used to train and combine 2, 048 depth-two trees over the d× d× F candidate

features (channel pixel lookups), where d is the baseline classifier’s size and F is the number of

convolutional responses, i.e., the patch descriptors (e.g., VGGs architecture has F = 96 kernels

in the first layer). The convolutional responses from all positive and negative patches which are

extracted from the training set are rescaled to a fixed d × d size (in our case d = 25) before they

serve as input to the classifier. In practice, classifiers with various d can be trained to capture

different resolutions of these representations. On testing all classifiers are applied to the raw image

and their detections are aggregated and non-maximally suppressed jointly.

Mining samples: We train the classifier with positive and negative samples extracted from

Pascal 2007 VOC [48]. Positive samples are the ones that correspond to the ground truth annotated

objects, while negatives are defined as rectangular samples randomly extracted from the training

set at different scales and aspect ratios, having less than 0.3 intersection-over-union (IoU) overlap

with the positives. For testing, we use patches sampled from the validation sets of VOC 2007 and

ImageNet 2013 (detection), both exhaustively annotated.3 There is some margin for improvement

by more sophisticated sampling of negatives on VOC and ILSVRC, since their annotation does not

include all possible object classes that can appear in an image.

While using hierarchical feature responses, annotations have to be mapped to corresponding

regions in each filter map while taking into consideration the padding parameters and kernel sizes

for specific network architecture.

3All object instances of C classes are fully annotated, with C = 20 for Pascal, and C = 200 for ImageNet
Detection, so we can test whether a negative candidate impinges on actual objects.
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Figure 3.2: An image from Pascal VOC and its convolutional responses with a subset of first-layer filters. In

order to classify object candidates, a binary boosting framework is trained with positive (green) and negative

(red) samples which are extracted from CNN’s lower layers.

Connection with EdgeBoxes [192]: After testing filter responses from several layers, we have

found that using only the first convolutional responses before any spatial pooling is applied yields

the best performance. Given this choice and the nature of first-layer filters (Fig. 3.1), our method

ends up relating to BING [29] and EdgeBoxes [192], which use edge features, and methods that

use color similarity (e.g., Selective Search). This family of methods provides quick detection, as

the time-consuming high-level segmentation is avoided. On the other side, omitting a segmentation

step has the drawback that it is less likely to generate proposals which are well-aligned with the ob-

ject boundaries. Nevertheless, a subsequent regression step which leverages on image information

and features from the upper convolutional layers can alleviate this shortcoming.
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Testing: We apply the learned classifier on a sliding window centered at every pixel, with S

different scales and R aspect ratios. We choose S = 12 scales and R = 3 aspect ratios. Non-

maximum suppression (NMS) is used to reject detections with more than U IoU overlap for every

(scale, aspect ratio) combination. Finally, after detections from all scales and aspect ratios are

aggregated, another joint NMS with V IoU is applied. We experimented with different parameters

and after cross validation we use U = 63% and V = 90% to report results in Fig. 3.3.

Bounding-Box Regression: After extracting the proposals, a regression step can be applied to

refine their location. As proposed by [60], a linear regressor is used with regularization constant

λ = 1, 000. For training we use all ground truth annotations Gi and our best detection P i per

ground truth for all training images i, i ∈ {1, . . . , N} from Pascal VOC 2007. The best detection

is defined as the one with the highest overlap with the ground truth. We throw away pairs with less

than 70% IoU overlap. The goal of the regressor is to learn how to shift the locations of P towards

G given the description of detected bounding box ϕ. The transformations are modeled as linear

functions of pool5 features, which are obtained by forward propagating the P regions through the

Proposal CNN.

3.3 Experiments

We adopt ImageNet 2013 (detection) [136] as a test benchmark. Note that the boosting classi-

fier and the regressor are instead trained on Pascal 2007 VOC. We follow the evaluation protocol

proposed by [73] and report the performance vs. localization accuracy (Fig. 3.3) and vs. number

of candidates per image (Fig. 3.4). Specifically, we calculate the recall of ground-truth objects

for various localization thresholds using the IoU criterion, as it is customary on Pascal VOC. In

Fig. 3.3 we report performance compared to state-of-the-art methods and three baselines, as eval-

uated by [73]. Each algorithm is allowed to propose, on average, up to 10, 000 regions per image.

The methods are sorted based on the Area-Under-the-Curve (AUC), while in parentheses we report

the average number of proposed regions per image. A small subset of images have been blacklisted

in the evaluation process per ILSVRC policy.
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Figure 3.3: Proposals quality on ImageNet 2013 validation set when at most 10,000 regions are proposed

per image. On recall versus IoU threshold curves, the number indicates area under the curve (AUC), and

the number in parenthesis is the obtained average number of proposals per image. Statistics of comparison

methods come from [73]. Our curves are drawn dashed.

Recall vs. localization: Our method belongs to the family of algorithms with fast and approx-

imate object detection, such as BING and EdgeBoxes. These algorithms provide higher recall rate

but poorer localization compared to methods that use segmentation, such as Selective Search. The

latter are considerably slower but more accurate in localizing the objects. In Table 3.1 we provide

the recall rate for varying localization accuracy measured by IoU. Our method provides the highest

recall until around 65% IoU overlap. We also provide in Fig. 3.3 and Table 3.1 the gain in perfor-

mance when we jointly use Selective Search and our method while still constraining the number

of proposals to be less than 10, 000. The two approaches are complementary, as Selective Search

provides better localization, while our algorithm sports higher recall, i.e., higher retrieval rate of
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Recall (%) for various IoU thresholds IoU ≥ 0.5 IoU ≥ 0.65 IoU ≥ 0.8 Testing time (s)

Selective Search [164] 94.6 89.0 72.2 10

Randomized Prim [111] 92.3 82.0 61.2 1

MCG [10] 91.8 81.0 60.6 30

Edge Boxes [192] 93.1 86.6 49.7 0.3

Boosting Convolutional Features 98.1 89.4 38.7 2

Endres 2010 [46] 81.1 67.7 46.4 100

BING [29] 95.5 43.0 7.2 0.2

Boosting Conv Features and Selective Search 97.7 91.9 75.3 12

Gaussian 85.3 72.5 51.3 0

Sliding window 90.8 56.9 14.1 0

Superpixels 51.3 26.7 10.0 1

Table 3.1: Comparison of our method against various category-independent object detectors on the Valida-

tion set of ImageNet 2013 (detection). We compare recall for various overlap thresholds. To be consistent

with published literature, Pascal VOC’s intersection-over-union (IoU) criterion is used. Methods are sorted

according to the AUC, similar to Fig. 3.3. In bold font the top-2 methods per IoU threshold. Representative

testing times are shown in the last column.

ground truth objects for localization accuracy less than 65% IoU.

Time complexity: Test time is linear in the number of deployed classifiers, scales, aspect

ratios, and image size, with other parameters held constant. In Table 3.1 an estimate of average

test time is shown in the last column for our framework compared to others as evaluated by [73].

Extracting convolutional responses for the validation image set of ImageNet 2013 takes only a

few minutes with Caffe [79] on a single K40 GPU (in specific 2ms per image, mostly consumed

for saving the features). Training the boosting framework [9], now included in Dollar’s Matlab

toolbox [37], on Pascal VOC 2007 (train-val and test: 9, 963 images with 24, 640 annotated objects)

with a high-end multi-core CPU takes about three hours. This consists of training on all positives

and 20k negatives, and additionally three rounds of bootstrapping, when at each round 20k more

negatives are extracted among the classifier’s false positives. The training time increases for larger
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Figure 3.4: Proposals quality on ImageNet 2013 validation set in terms of detected objects with at least

50% IoU for various average number of candidates per image. Compared to all other methods from [73],

our method is the most effective in terms of ground truth object retrieval when at least 1, 000 regions are

proposed and accurate localization is not a major concern.

values of baseline detector’s size, such as d = 40. But this still does not affect test time.

At test time, the classifier is applied densely on a sliding window on 20, 121 validation images

from ImageNet (detection). S = 12 different scales and R = 3 different aspect ratios are used.

Greedy non-maximal suppression is performed, where bounding boxes are processed in order of

decreasing confidence, and once a box is suppressed it can no longer suppress other boxes. Sepa-

rate and joint NMS are deployed with U = 63% and V = 90% IoU thresholds, correspondingly.

Testing on a multi-core CPU takes about 2s per image.

In Fig. 3.4 we compare performance for at least 50% IoU recall for different number of pro-

posed regions. Our scheme is the most effective when at least 1, 000 regions are proposed. For a

smaller number of proposals, our performance degrades significantly.
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3.4 ImageNet detection challenge

To investigate the end-to-end effectiveness of our proposal scheme, we evaluate the performance

on ImageNet 2013 Detection. We fit our algorithm within the “Regions-with-CNN” detection

framework [60] by replacing the output of Selective Search [164] with our regions instead.

In Table 3.2 we show the mean and median average precision on a subset of the validation

set. We use the {val1, val2} split, as in [60]. We deploy their pretrained CNN and SVM models

as category CNN, which are trained on {val1, train1k}, i.e., 9,887 validation images and 1,000

ground truth positives per class from the classification set. The Proposal CNN is the VGGs model

from [26], pretrained on ILSVRC2012. Images are rescaled to 900 pixels width while preserving

the aspect ratio. In that case, Selective Search proposes on average 5, 826 regions per image. It is

wortwhile to mention that in [60] all images are rescaled to have 500 pixels width, which yields

29.7 and 29.2 mean and median AP for 2, 403 regions on average, respectively. For our method we

used the model in Figs. 3.3 and 3.4, which generates 9, 927 proposals on average.

Average Precision (AP) Mean AP Median AP Number of regions

Selective Search [164] 31.5 30.2 5,826

Boosting Convolutional Features 34.0 32.5 9,927

Table 3.2: Mean and median average precision on the ImageNet 2013 detection task. We employ

the Regions-with-CNN (R-CNN) framework to compare regions by swapping Selective Search with our

method. This comparison is without post-processing regression step.

3.5 Discussion

We have introduced a proposal scheme that leverages on convolutional features from lower layers

of CNNs to train a boosting classifier to label each bounding box in a sliding window as “object”

or “background”. The former are then fed to a Category CNN for classification. In addition to

comparing recall and computational cost against other leading proposal schemes, we have shown
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improvement end-to-end on the ImageNet detection challenge, which can be ascribed to two fac-

tors: Higher recall within roughly 50 − 70% IoU thresholds, and a larger number of proposals.

Coarse localization is corrected to some extent from subsequent steps of R-CNN as the slack is

absorbed by the CNN. Further improvement can be had with class-specific regression on top of

prediction, so that bounding boxes better wrap the objects. Finally, an ensemble of models along

with more sophisticated architectures (e.g., GoogLeNet [158], MSRA PReLU-nets [67], very-

deep nets [146], etc.) would improve the entire pipeline. However, absolute performance is of

no relevance here, as we use end-to-end scores as a means to evaluate the impact of our method

in comparison with competing proposal schemes. Our method, when combined with Selective

Search, is state-of-the-art when one is willing to use a number of proposals in the order of 1000 or

more per image. While in some applications this may be too high a cost, the gain in performance

may be worthwhile in other applications.

Our work is based on the premise that a CNN is not as effective in dealing with simple group

transformations as its architecture would suggest, which is derived by the empirical success of

Regions-with-CNN approaches in the current benchmarks in use in the community. Of course,

empirical tests involve a large number of parameters and design choices that confound the compar-

ison, so it is possible that improvements in the design of CNNs, for instance by allowing them to

manage convolutions with respect to larger groups of transformations [32], would render the use

of proposals moot. On the other hand, it is possible that the training cost of marginalizing known

classes of transformations such as location, scale, aspect ratio, in terms of size of the data set, may

be too high for current architectures, even for convolutional networks that are carefully designed

to manage such variability. A more desirable course of academic action than empirical evaluation,

with the ensuing escalating size of the datasets and number of parameters, would be to analyze

the representational properties of convolutional architectures to determine the extent in which they

can effectively marginalize nuisance variability by design, without the need to learn away nuisance

variability that is known to exist and well understood. DSP-CNN is a step toward this direction,

which is presented in Sect. A.3.4.
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CHAPTER 4

Person Depth ReID: Robust Person Re-identification with

Commodity Depth Sensors

4.1 Introduction

Person re-identification is a fundamental problem in automated video surveillance and has attracted

significant attention in recent years [57, 166, 62]. When a person is captured by cameras with

non-overlapping views, or by the same camera but over many days, the objective is to recognize

them across views among a large number of imposters. This is a difficult problem because of

the visual ambiguity in a person’s appearance due to large variations in illumination, human pose,

camera settings and viewpoint. Additionally, re-identification systems have to be robust to partial

occlusions and cluttered background. Multi-person association has wide applicability and utility

in areas such as robotics, multimedia, forensics, autonomous driving and cashier-free shopping.

4.1.1 Related work

Existing methods of person re-identification typically focus on designing invariant and discrimi-

nant features [64, 49, 109, 95, 188, 176, 23, 102], which can enable identification despite nuisance

factors such as scale, location, partial occlusion and changing lighting conditions. In an effort to

improve their robustness, the current trend is to deploy higher-dimensional descriptors [102, 105]

and deep convolutional architectures [101, 178, 1, 173, 169, 153].

In spite of the ongoing quest for effective representations, it is difficult to deal with very large

variations such as ultra wide-baseline matching and dramatic changes in illumination and image

resolution, especially when having limited training data. As such, there is vast literature in learning
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Person Color ReID [173] Person Depth ReID

Figure 4.1: Convolutional filter responses from “conv3” layer using the same frame from the TUM GAID

data as input for both Person Color ReID [173] and the feature encoder fCNN of Person Depth ReID, which

is drawn in Fig. 4.3.

discriminative distance metrics [93, 100, 191, 110, 118, 161, 102, 127, 114, 36] and discriminant

subspaces [128, 105, 174, 102, 131, 185]. Other approaches alleviate the problem of pose variabil-

ity by explicitly accounting for spatial constraints of the human body parts [27] or by predicting

the pose within a multi-shot setting [30]. Similarly, adjacency constrained salient region match-

ing [187] can help tackle the misalignment caused by large viewpoint and pose variation. In order

to reduce the intra-class variance while preserving the intrinsic graphical structure, Shi et al. [142]

mined positive and negative samples of different difficulty and built graphical relationships to

approximate geodesic distance for training convolutional neural networks. Kodirov et al. [92] fol-

lowed unsupervised methodology to formulate a graph regularized dictionary learning model and

efficient optimization algorithm for cross-view matching.

However, a key challenge to tackle within both distance learning and deep learning pipelines

is the small sample size problem [28, 185], which is attributed to the lack of large-scale person
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re-identification benchmarks. New datasets have been released recently, such as CUHK03 [101]

and MARS [189], a video extension of the Market-1501 dataset [190]. Their training sets are in

the order of 20, 000 positive samples, i.e. two orders of magnitude smaller than Imagenet [136]

which has been successfully used for object recognition [91, 146, 158].

The small sample size problem is especially acute on the person re-identification algorithms

which leverage temporal sequences [66, 175, 22, 116], as the feature dimensionality increases lin-

early in the number of frames that are accumulated compared to the single-shot representations. On

the other hand, explicitly modeling temporal dynamics and using multiple frames help algorithms

to deal with noisy measurements, occlusions, adverse poses and lighting.

Adding regularization, such as Dropout [151], to the layers where most parameters are con-

centrated like the fully-connected ones, is one step towards reducing the parameter space and

allow learning models to have higher generalization capability. Xiao et al. [173] achieved state-of-

the-art accuracy on many person re-identification benchmarks by designing a deep convolutional

network, similar in nature to GoogleNet [158], and training it on the union of several available

datasets. Additionally, they further improve their performance on individual datasets by introduc-

ing “domain-guided dropout”, where the dropout rate for each neuron is adaptively set as a function

of its activation rate in the training set.

Haque et al. [66] introduced a carefully designed glimpse layer in order to compress their 4D

spatiotemporal input representation of 500-frame video from ≈ 2.5 × 109 elements to a feature

vector size in the order of 1× 106 elements. They provide the compressed vector as input to a 4D

convolutional encoder, while the decision for the next glimpse location is made using a sparsifi-

cation technique with a reinforcement learning objective within a recurrent attention framework.

However, designing such a downsampling mechanism with the objective of minimizing the large

input size without losing much information can be challenging. Our algorithm has several key dif-

ferences with this work: First, we do not use any glimpse layer and there is no locator module, as

our input module detects the human silhouette region, which is used in its entirety. Second, instead

of a 4D convolutional autoencoder, our encoder is 3-dimensional and its input is one frame. Third,

we design a temporal attention unit to estimate the weight of each frame, which regularizes the

recurrence and affects the multi-shot evaluation.
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Some recent works in natural language processing [108, 24] explore temporal attention in order

to keep track of long-range structural dependencies. Yao et al. [177] in video captioning use a soft

attention gate inside their Long Short-term memory decoder, so that they estimate the relevance

of current features in the input video given all the previously generated words. Our algorithm is

different from these approaches as we use a hard attention unit, which is not differentiable but can

be learned with reinforcement learning.

In the literature there are RGB-based approaches which extract the binary silhouettes and es-

timate geodesic distances between body parts [82, 183, 112]. Also, depth-based methods that use

measurements from 3D human skeleton data have emerged in order to infer anthropometric and

human gait criteria [125, 121, 2, 5, 45]. In an effort to leverage the full power of depth data, re-

cent methods use 3D point clouds to estimate motion trajectories and the length of specific body

parts [76, 186]. It is worthwhile to point out that skeleton information is not always available. For

example, the skeleton tracking in Kinect SDK can be ineffective when a person is in side view or

the legs are not visible.

4.1.2 Motivation

On top of the above-mentioned challenges, RGB-based methods are challenged in scenarios with

significant lighting changes and when the individuals change clothes. These factors can have a

major influence on the effectiveness of a system that, for instance, is meant to track people across

different areas of a building over several days where different areas of a building may have very

different lighting conditions, the cameras may have different color balance, and a person may wear

clothes of different colors. This is our key motivation for investigating representations that are

insensitive to color information such as silhouettes from depth.

4.1.3 Contributions

Our contributions can be summarized as follows:

i) We explore the use of depth sensors for person re-identification under adverse conditions,

such as cases where the subjects appear with different clothes over time, while still being ro-

59



bust to viewpoint variation, human pose and partial occlusion. We construct representations from

depth, so that we enable feature learning in end-to-end fashion with deep convolutional neural net-

works. The learned representations are different in nature from those learned with RGB models

(see Fig. 4.1). Our experiments (e.g., see Fig. 4.5) suggest that depth is an effective modality for

this task.

ii) We tackle the small sample size problem in various ways: first, we customize the opti-

mization for the depth modality and deploy dropout in the convolutional encoder and the recurrent

element. Second, we use the time as regularizer, as the agent is a recurrent neural network. Third,

we design a temporal hard attention unit, whose weights are learned with a reinforcement learning

objective, and enables scalability over longer sequences. Fourth, initializing the encoder with a

pre-trained RGB ReID model [173] provides multimodal data augmentation.

iii) We conduct an empirical study using three re-identification datasets. The TUM-GAID

database [71] is the largest one, including 305 persons. In the scenario where 32 subjects appear

with different clothes after three months, our model achieves 6.2% higher top-1 and 23.6% higher

top-5 accuracy compared to the top-performing RGB-based ReID method [173]. Next, we show

further performance improvements when deploying recurrence and temporal attention, along with

the head color information. We use the DPI-T dataset [66] with views from top to compare with

Haque et al., who released this dataset and used an attention model with spatial glimpse layer.

Finally, in order to evaluate the effectiveness of our algorithm with more challenging partial occlu-

sions, viewpoints, and human poses, we introduce the FaceBody dataset. It involves 57 subjects

that walk and operate in a realistic meeting room scenario.

4.2 Our Method

4.2.1 Input Representation

The input for our system is raw depth measurements from the Kinect V2 Sensor. The input data are

depth images D ∈ Z512×424, where each pixel D[i, j], i ∈ [1, . . . , 512], j ∈ [1, . . . , 424], contains

the Cartesian distance, in millimeters, from the image plane to the nearest object at the particu-

lar (i, j) coordinate. In “default range” setting, [0, 0.4m) and (8.0m,∞) ranges are classified as
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Figure 4.2: The cropped color image (left), the grayscale depth representation Dg

p (center) and the result

after background subtraction (right) using the body index information Bp from skeleton tracking.

unknown measurements, [0.4, 0.8)[m] as “too near”, (4.0, 8.0][m] as “too far” and [0.8, 4.0][m] as

“normal” values. We have a dedicated algorithm to crop a rectangle that surrounds the person.

When skeleton tracking is effective, the body index B ∈ Z512×424 is provided by the Kinect SDK,

where 0 corresponds to background and a positive integer i for each pixel belonging to the person i.

Therefore, when the Body Index is available, there is no need to use tracking in order to effectively

crop the person (see Sec. 4.3.6).

After extracting the person region Dp ⊂ D, the measurements within the “normal” region are

normalized in the range [1, 256], while the values from “too far” and “unknown” range are set as

256, and values within the “too near” range as 1. In practice, in order to avoid a concentration of the

values near 256, whereas other values, say on the floor in front of the subject, span the remaining

range, we introduce an offset to = 56 and normalize in [1, 256− to]. This results in the “grayscale”

representation Dg
p. When the skeleton information is available, the body index Bp ⊂ B is used as

binary mask for background subtraction on the person depth region Dp before range normalization

(see Fig. 4.2). Assuming that we crop person i, each pixel of Bp with body index value different

from i is set to 256.
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We also consider the binary representation Db
p, as “black-and-white silhouette”, by threshold-

ing on tb = 128:

Db
p(i, j) =


1, if Dg

p(i, j) < tb

128, if Dg
p(i, j) >= tb

(4.1)

for (i, j) ∈ [1, 512]×[1, 424]. The average image is computed over the training set and is subtracted

from each testing image.

4.2.2 Model

The problem is formulated as sequential decision process of an agent that performs human recog-

nition from a partially observed environment via video sequences. At each time step, the agent

observes the environment via depth camera, calculates a feature vector based on a deep Convo-

lutional Neural Network (CNN) and actively infers the importance of the current frame for the

re-identification task via a temporal attention unit. The weight that is estimated by the attention

unit determines whether the hidden representation is updated or not, which subsequently affects

the classification. This hidden representation is computed by a recurrent module, which is meant to

model the temporal dynamics. Finally, the agent receives a reward based on the success or failure

of its action at each step. The agent’s objective is to maximize the sum of rewards over time. The

agent, as well as its comprising modules, are described in the following paragraphs. An outline of

the model is shown in Fig. 4.3.

4.2.2.1 Agent

Formally, the problem setup is a Partially Observable Decision Process (POMDP). The true state

of the environment is unknown. The agent learns a stochastic policy π((wt, ct)|s1:t; θ) with pa-

rameters θ = {θg, θw, θh, θc} that, at each step t, maps the history of past information s1:t =

I1, w1, c1, . . . , It−1, wt−1, ct−1, It to a distribution of actions. Both actions contribute to the recog-

nition task via the estimated frame weight wt and class posterior ct. The weight wt is computed by

the temporal attention unit, which takes the current frame encoding gt as input, while the classifier

is attached on the RNN output ht. The vector ht maintains an internal state of the environment as
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fCNN(�g)

fw(�w)

fLSTM(�h)

It

ht-1 ht

ct

gt

wt ~ B(1, f w(gt;�w))

Figure 4.3: Model architecture: a recurrent deep neural network with temporal attention.

a summary of past observations and is updated by the recurrent module fLSTM(θh). Note that, for

simplicity of notation, the input image at time t is denoted as It, but the exact input representation

is the grayscale region Dg
p as described in Sec. 4.2.1. At each time step t, the agent receives a

reward rt, which equals to 1 when the frame is correctly classified and 0 otherwise.

4.2.2.2 Feature encoder fCNN(θg)

The first design choice pertains to choosing features that are robust to various image and human

shape variations due to camera viewpoint, human pose, light conditions, noisy measurement and

partial occlusion. Recent investigation for the best architecture for person re-identification [101,

178, 1, 173, 169, 153] has shown that the deep convolutional network introduced by Xiao et

al. [173] has outperformed other approaches on several public datasets. This network uses batch

normalization [77] and includes 3 × 3 convolutional layers [146], followed by 6 Inception mod-

ules [158], and 2 fully connected layers. We adopt this architecture because in addition to its
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effectiveness in RGB-based person re-identification, it allows us to initialize the parameters of

Depth ReID with a pre-trained model, as a form of data augmentation.

We introduce two modifications in this network. We replace the top layer with a 256×N fully

connected layer, where N is the number of subjects and depends on the dataset. The weights of

this layer are initialized at random from a zero-mean Gaussian distribution with standard deviation

0.01. Additionally, we add dropout regularization between the fully-connected layers.

The model is trained to recognize the identity of a person by minimizing its cross-entropy loss,

as is customary in other large-scale recognition tasks, such as face identification [154]. Afterwards,

we remove the model’s top layer and use the 256× 1 vector as our feature encoding gt.

4.2.2.3 Recurrent module fLSTM(θh)

We use Long Short-Term Memory (LSTM) element units as described in [180], which have been

shown by Donahue et al. [39] to be effective in dealing with the vanishing and exploding gradients

problem and modeling long-term dynamics for computer vision tasks. Assuming that σ() is sig-

moid, g[t] is the input at time frame t, h[t− 1] is the previous output of the module and c[t− 1] is

the previous cell, the implementation corresponds to the following updates:

i[t] = σ(Wgig[t] +Whih[t− 1] + bi) (4.2)

f [t] = σ(Wgfg[t] +Whfh[t− 1] + bf ) (4.3)

z[t] = tanh(Wgcg[t] +Whch[t− 1] + bc) (4.4)

c[t] = f [t]⊙ c[t− 1] + i[t]⊙ z[t] (4.5)

o[t] = σ(Wgog[t] +Whoh[t− 1] + bo) (4.6)

h[t] = o[t]⊙ tanh(c[t]) (4.7)

where Wsq is the weight matrix from source s to target q for each gate q, bq are the biases leading

into q, i[t] is the input gate, f [t] is the forget gate, z[t] is the input to the cell, c[t] is the cell, o[t]

is the output gate, and h[t] is the output of this module. Finally, x ⊙ y denotes the element-wise

product of vectors x and y. Note that this LSTM does not use peephole connections between cell

and gates.
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4.2.2.4 Temporal attention unit fw(θw)

At each time step t the attention unit calculates the weight wt of the image frame It, as the latter

is represented by the feature encoding gt. This module consists of a linear layer which maps the

256 × 1 vector gt to one scalar, followed by Sigmoid non-linearity which squashes real-valued

inputs to a [0, 1] range. Next, the output of the module is defined by a Bernoulli random variable

with probability mass function:

f(wt; fw(gt; θw)) =


fw(gt; θw), if wt = 1

1− fw(gt; θw), if wt = 0

(4.8)

During training, the weight wt is chosen stochastically to be a binary value in {0, 1}. When

wt = 1, the current input gt is forwarded through the LSTM. In case wt = 0, the recurrent

module is bypassed and the hidden representation from the previous frame is propagated to the

current frame (ht := ht−1). During testing, the temporal unit acts deterministically and therefore

wt = fw(gt; θw).

This stochastic procedure introduces noise at the frame level during training, which is analo-

gous to dropout regularization, but with a data-driven Bernoulli parameter instead. The probability

of dropping a frame is controlled by the parameter p = fw(gt; θw), which ensures learning better

models, as shown empirically in Sec. 4.3.7. Frames that the encoder is more confident to classify

correctly are less likely to be dropped, as opposed to frames with a low-confidence encoder. This

behavior is learned via reinforcement learning as explained in Sec. 4.2.3.2. An example sequence

with the inferred Bernoulli parameter p for each frame is shown in Fig. 4.6.

4.2.2.5 Classifier fc(θc)

The classifier consists of a fully connected layer and Softmax, which map the 256 × 1 hidden

vector ht to the posterior class vector ct with length N depending on the dataset. We use dropout

regularization between the hidden vector and the classifier.
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4.2.3 Training

In our experiments we pre-train the parameters of the feature encoder θg before attaching the RNN

and the attention module and train the whole model in end-to-end-fashion. However, the entire

architecture can be trained from scratch end to end. In the following subsections we describe the

training process for the encoder and the recursive model with attention using a hybrid supervised

loss.

4.2.3.1 Training the encoder fCNN(θg)

Deploying popular training techniques [18] with depth data needs careful consideration regarding

the optimization process, as the dataset size is typically limited and the representations are of

different nature than those that are color-based (see Fig. 4.2). We found empirically that stochastic

gradient descent with modest base learning rate and low momentum can consistently converge to

a good local minimum.

Optimization. Formally, stochastic gradient descent updates the model’s weights w using a lin-

ear combination of the negative gradient of the loss Q(z, w) for input z with respect to the weights

w and the previous weight update v. The learning rate γ and the momentum µ are the coefficients

of these two terms, respectively. At time t the update is:

vt+1 = µvt − γt∇wQ(zt, wt) (4.9)

wt+1 = wt + vt+1 (4.10)

We choose base learning rate as low as γ0 = 3 × 10−4 and momentum 0.5 in order to achieve

convergence. The learning rate is reduced by a factor of 10 throughout training every time the loss

reaches a “plateau”. More details regarding the learning policy for each experiment are provided

in Sec. 4.3.

Initialization. Initially, the network weights and bias were randomly initialized using the “Xavier”

algorithm [61] which automatically determines the variance of initialization for each layer based
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Figure 4.4: The encoder convergence on FaceBody data.

on the number of input and output neurons. Since learning the parameters of such a large model de-

mands a significant amount of data, we found that multimodal data augmentation can significantly

improve the performance. To this end, we initialized parameters θg with a pre-trained RGB-based

person re-identification model that has been trained on the union of several ReID datasets (JSTL-

DGD model from [173]). In that case, only the parameters of the added fully-connected layer

for training the encoder are initialized at random. The learning rate multipliers for the learnable

parameters of that layer are set 10 times larger than all multipliers for the rest of the network.

Regularization Given the data sparsity, regularizing the model weights is very important for

identifying discriminative regions in depth images for person re-identification. We explore two

different methods. First, we use the original model without the regularizer. Next, we introduce

dropout between the two fully-connected layers (“fc7 dropout”), where most parameters are con-

centrated. In Fig. 4.4, we show the benefits of adding noise between layers “fc7” and “fc8”, both

in terms of top-1 accuracy and generalization ability.
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4.2.3.2 Training the attention unit and the RNN

The parameters of our model θ = {θg, θw, θh, θc} are learned so that the agent maximizes its total

reward over time R =
∑T

t=1 rt under the distribution of all possible sequences p(s1:T ; θ). This

involves calculating the expectation J(θ) = Ep(s1:T ;θ)[R] over a very big number of sequences,

which can quickly become intractable. As proposed by Williams [172] and recently deployed

successfully on recurrent models of spatial visual attention [120, 66], a sample approximation of

the gradient, known as the REINFORCE rule, can be applied as follows:

∇θJ =
T∑
t=1

Ep(s1:T ;θ)[∇θ log π(ut|s1:t; θ)(Rt − bt)] (4.11)

≈ 1

M

M∑
i=1

T∑
t=1

∇θ log π(u
i
t|si1:t; θ)(Ri

t − bt) (4.12)

where si’s sequences are obtained after M episodes.

In our case, as REINFORCE is applied on the output of Bernoulli stochastic unit with p =

fw(gt; θw) and probability mass function log f(u; p) = u log p + (1 − u) log(1 − p), the gradient

approximation is given by:

∇θJ ≈
1

M

M∑
i=1

T∑
t=1

ui
t − pit

pit(1− pit)
(Ri

t − bt) (4.13)

where Ri
t =

∑t
t′=1 r

i
t′ is the cumulative reward obtained following the execution of action ui

t.

Please note that this is a biased estimate of the gradient in order to achieve lower variance, as a

baseline reward bt is used. Consistent with [120], we set bt = Eπ[Rt], which is computed as the

mean square error between Ri
t and bt is minimized by backpropagation. This way, the baseline

reward is learned at the same rate as the rest of the model.

All in all, a hybrid supervised loss is used to train the attention unit and the RNN’s classifica-

tion output. At each step, the agent takes an action wt and the reward signal Ri
t is the supervision

for evaluating the value of the action for the classification task. The REINFORCE rule increases

the log-probability of an action that results in higher accumulated reward than the expected (base-

line) total reward (i.e. by increasing fw(gt; θw)). Otherwise, the log-probability decreases. Finally,

in order to backpropagate the gradients through the classifier that is attached on the LSTM unit
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backward through the whole network, we minimize the cross-entropy loss as is customary in su-

pervised learning. The objective is to maximize the conditional probability of the true label given

the observations It, i.e. we maximize log π(c∗t |s1:t; θ), where c∗t corresponds to the ground-truth

class for time step t.

4.3 Experiments

4.3.1 Depth-based Datasets

TUM-GAID Most existing depth-based datasets for person re-identification contain a small

number of subjects. IIT PAVIS [13], BIWI [123] and IAS-Lab [124] contain 79, 50 and 11 per-

sons, respectively. On the other hand, TUM-GAID database [71] is one of the largest to date. It

contains RGB video, depth and audio for 305 people in three variations. A subset of 32 people is

recorded a second time after three months with different clothes. Cropped versions for both the

RGB and the depth image sequences are provided by the authors. The skeleton data is not available

for this dataset.

FaceBody In spite of its large number of subjects, the persons in TUM-GAID always appear

from the side view with fixed viewpoint and distance. As we want to explore the robustness of

our method with varying vantage point, human pose, scale, and partial occlusions, we introduce

a new dataset, which we name FaceBody. It includes 57 subjects appearing from 2 camera view-

points walking into a meeting room in different walking patterns. Each person executes 6 walking

Dataset IDs Training Images Testing Images Appearances

TUM-GAID [71] (N-train) 150 34,881 17,625 1 (2 for 16 IDs)

TUM-GAID [71] (N-test) 155 35,454 17,776 1 (2 for 16 IDs)

FaceBody (t1, t4) 57 18,178 14,984 2

DPI-T [66] 12 3,740 4,010 25 (5 different clothes)

Table 4.1: Statistics of the datasets.
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sequences, amounting to 12 sequences in total. We simultaneously collect the color and depth

sequences with the Kinect V2 Sensor. For a subset of the data sequences where skeleton tracking

is successful by Kinect SDK (e.g. when the face is visible at some point or when there are no large

body occlusions), we also have the skeleton information, which is the 3D location of 25 human

joints and pixel-wise body index per person.

Depth-based Person Identification from Top (DPI-T) Haque et al. [66] recently introduced

DPI-T for person re-identification from depth. The new dataset contains 12 persons in 300 training

and 355 testing sequences for a total of 3, 740 training and 4, 010 testing images, respectively. It is

different from previous datasets in many ways. First, more diverse observations per individual are

included, as the subjects appear in a total of 25 sequences across many days. The individuals wear

5 different set of clothes on average and walk at variable speeds. Second, unlike most publicly

available datasets, the subjects appear from the top. This is a common scenario in automated video

surveillance, where the camera is attached near the ceiling looking down. Third, the individuals

are captured in daily life situations where they hold objects such as handbags, laptops and coffee.

This data imposes new challenges in person re-identification and is used as the third benchmark.

Table 4.1 provides a summary of statistics for the three datasets.

4.3.2 Evaluation Metrics

Top-k accuracy equals the percentage of test images or sequences for which the ground-truth label

is contained within the first k model predictions. Plotting the top-k accuracy as a function of

k gives the Cumulative Matching Curve (CMC). Integrating the area under the CMC curve and

normalizing for the number of IDs produces the normalized Area Under the Curve (nAUC).

We evaluate our method in both “single-shot” and “multi-shot” mode by testing on individual

images and sequences, respectively.
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4.3.3 Experimental Settings

The encoder fCNN is trained using Caffe [79]. Based on the input size of the deployed convolu-

tional architecture, we rescale the input depth images to be 144 × 56 and subtract the mean depth

image. We train our model using stochastic gradient descent with mini-batches of 50 images for

training and testing. We set the momentum as low as 0.5, as higher values cause the model to

diverge. The momentum µ effectively multiplies the size of the updates by a factor of 1
1−µ

after

several iterations, so lower values result in smaller updates. The weight decay is set 2 ∗ 10−4, as is

common in Inception type of architecture [158].

The rest of the model in Fig. 4.3 is implemented in Torch/Lua [33]. We implemented our own

customized conversion scripts from Caffe to Torch for the pretrained encoder, as the architecture

is not standard. As for training Depth ReID, the batch size is 50 images, the momentum is 0.9 and

the learning rate linearly decreases from 0.01 to 0.00001 in 400 epochs up to 500 epochs maximum

duration. For the RNN history of rho = 3 frames is used, unless otherwise stated.

The experiments are conducted on a modern machine with NVIDIA Tesla K80 GPU, 24 Intel

Xeon E5 cores and 64G RAM memory. The code implementing our method and the pretrained

models necessary to reproduce the evaluation will be distributed publicly upon completion of the

anonymous review process.

4.3.4 Baselines

Color model. The model designed by Xiao et al. [173] has been shown to outperform other

methods on various public datasets. For instance, they achieve 13.2% higher CMC top-1 accuracy

than the previous top-performing method [127] on large CUHK03 [101]. Therefore, we choose

this method as our RGB-based baseline.

Motion model. We also compare our method to a motion-based method, as motion is also insen-

sitive to appearance changes. Castro et al. [22] demonstrated competitive results on TUM-GAID,

although they used a resolution of 80 × 60, which is 8 times lower than the original resolution

of 640 × 480 for these sequences. By comparison, our model’s input is 144 × 56. Additionally,
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although we can make one-shot predictions, Castro et al. built a representation on subsequences

of 25 frames. They extract dense optical flow between consecutive frames, crop and stack the flow

channels, which are then passed through a convolutional neural network to obtain gait signatures

for the entire subsequence.

Depth model. The Recurrent Attention Model (RAM) introduced by Haque et al. [66] relies

only on depth images like our method. They introduced the DPI-T dataset, which we use for

comparisons.

4.3.5 TUM-GAID database

Evaluation protocol. TUM-GAID depth data includes 12 “normal” sequences (N), 4 sequences

with a backpack (B) and 4 sequences with coating shoes (S). We use the N setting, where sequences

n01–n06 are from session 1, and sequences n07–n12 are from session 2, where the subjects have

changed clothes. In half of the sequences the persons walk from left to right, while in the other

half they walk from right to left. Of the 305 persons that appear in session 1, only 32 of them

participate in session 2. Based on the official protocol, we use sequences n1–n4, n07–n10 for

training, and sequences n5–n6 and n11–n12 for validation and testing, respectively. The subjects

are partitioned into 150 training and 155 testing subjects, where the split is even for individuals

participating in session 2.

Preprocessing. The tracked RGB and depth data are conveniently provided by the creators of

TUM-GAID. Since the skeleton data are not available, we do not perform background removal.

This has minor influence, as the background is identical for all sequences, filled in with a plain

wall.

Task 1: Training on multiple clothes. First, we use all training sequences where the individuals

appear in two sets of clothes. For this experiment we exclusively benchmark the fCNN module. It

is pre-trained on the training subjects, and afterwards fine-tuned on the training sequences of the

testing subjects. Small base learning rate of 5 × 10−4 is used for pre-training. For fine-tuning the
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Resolution Method top-1 accuracy (%)

640× 480

Gait Energy [71] 44.0

SVIM [171] 65.6

Fisher Motion [23] 78.1

SDL [183] 96.9

80× 60 Gait Signatures [22] 62.5

144× 56

Depth ReID (TL) 92.7

Binary Depth ReID 95.4

Depth ReID 97.0

Table 4.2: Comparisons on TUM-GAID for Task 1.

base rate is set 1 × 10−3, as the network has adapted to depth data. A multistep policy is adopted

where the learning rate decreases by a factor of 10 after 8k and 12k iterations and the training

converges by 16k iterations. Since the Color ReID network [173] is already pre-trained on RGB-

based datasets, we directly fine-tune it on the testing subjects. Finally, we train a depth model with

the same protocol on binary representations Db
p (see Sec. 4.2.1).

In Table 4.2 we provide comparison with other methods. Since the motion-based baseline [22],

which also uses a deep convolutional architecture, allows fine-tuning only the top layer on the

testing IDs, we also evaluate Depth ReID with this constraint. This method is presented at rows 6

and is notated as “TL”. The deployed resolution that different methods use is noteworthy. Most

methods under comparison use the data in their original resolution, which is 640×480. Our method

and Castro et al. [22] that are based on convolutional networks downsample the images by a large

factor in order to match the model input. Despite its lower resolution, Depth ReID outperforms

the other methods. Additionally, even when fine-tuning only the last layer, the depth features are

well-transferable [179] to the new set of persons.

Task 2: Constrained training on one set of clothes. Our objective is to examine whether a

color-insensitive representation such as depth can offer more accurate person re-identification
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Method top-1 top-5 nAUC

RGB ReID, single-shot [173] 41.8 64.4 74.3

Depth ReID, single-shot 48.0 88.0 85.0

Depth, single-shot+RGB ReID 48.6 83.0 81.9

Head RGB ReID 59.2 78.4 79.4

Depth, single-shot+Head RGB ReID 65.4 85.9 85.2

Depth ReID, multi-shot with RNN 56.3 87.5 87.5

Depth ReID, multi-shot with RNN and attention 59.4 93.8 89.6

Head RGB ReID+Depth ReID, multi-shot with RNN and attention 71.9 93.8 89.9

Table 4.3: Recognition accuracy (%) and normalized area under the curve (%) on TUM-GAID (normal

sequences) for Task 2.

when the subjects change clothes. To that end, we fine-tune on the training sequences n01–n04 of

the testing IDs, using the sequences n05–n06 for validation. Therefore, this model has no access

to training data from session 2. Next, the model is evaluated on sequences n11–n12. We make the

assumption that the 32 subjects that participate in the second recording are known.

In Table 4.3 we show that Depth ReID is more robust than the corresponding RGB model,

presenting 6.2% higher top-1 and 23.6% higher top-5 accuracy in single-shot mode. Note that

Depth ReID achieves 97.0% accuracy (cf. Table 4.2) when sequences from both set of clothes are

available during training. This is a critical problem to deal with as training data are not always

available for new clothes.

As large variations in color and texture can be distracting for verification purposes, we attempt

to rely more on the head region, which is less sensitive to day-by-day changes. To that purpose,

we fine-tune the RGB-based pre-trained model [173] on the upper body part, which we call “Head

RGB ReID”. In order to remove the foreground, we extract a binary mask from depth by thresh-

olding the depth representation. Given that the subjects in color and depth images are not perfectly

pixel aligned, we apply morphological dilation on the binary mask with a circular disk of radius

4 to ensure that the foreground region includes the whole body in RGB. Then we crop the head
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Figure 4.5: Cumulative matching curves for Task 2 on TUM-GAID. For rank-k (x axis), the y axis denotes

recognition accuracy, if the ground truth label is within the method’s top-k predictions.

region using the circumscribed rectangle around the top 1/4 of the foreground region. In Table 4.3

we see the improvement in top-1 accuracy using Head RGB ReID, individually and jointly with

depth information. Finally, we show the accuracy of Depth ReID with LSTM units and temporal

attention, while evaluating each sequence in multi-shot mode.

In Fig. 4.5 we visualize the CMC curves for single-shot setting. Depth ReID scales better than

its counterparts, which is validated by the normalized Area Under the Curve (nAUC) in Table 4.3.

Intuitively, when the face is well-visible, Head RGB ReID is expected to be reliable, which ex-

plains the higher top-1 accuracy. On the other hand, when the face is mostly occluded, more

guesses are not likely to improve the re-identification rate more quickly than body models.

4.3.6 FaceBody dataset

Evaluation protocol. The new dataset contains 6 sequences, t1–t6, of 57 subjects in a realistic

meeting room scenario, as captured by two different viewpoints with Kinect V2 Sensors. The

persons enter the room, walk in various paths, write on the board, and then exit the room. The
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Method top-1 top-5

RGB ReID, single-shot [173] 62.7 90.6

Depth ReID, single-shot 78.6 91.4

Depth ReID, Multi-shot with RNN 91.1 98.3

Depth ReID, Multi-shot with RNN and attention 92.9 98.8

Table 4.4: Re-identification accuracy (%) on FaceBody.

data, in addition to RGB and depth images, includes the skeleton tracking, i.e. the body index

information, which is pixel aligned to the depth images and the 3D location of 25 pre-determined

joints [144]. The body index is a reliable way to crop the persons in all frames, while sparing the

need to deploy a tracker. However, the body index is available only when the skeleton tracking

works successfully. In order to ensure the quality of extracted detections, we use the sequences t1

and t4 from each camera that have skeleton data for all 57 subjects. Let us denote the two cameras

c1 and c2. The sequences t1/c1 and t1/c2 are used for training and the sequences t4/c1 and t4/c2

for testing, which sum up to 18, 178 training and 14, 984 validation images.

Preprocessing. We follow the process as described in Sec. 4.2.1 to obtain the depth crops Dg
p.

As there is no perfect alignment between the depth and the RGB data, we do not mask out the

background for the RGB images. Therefore, the background is a nuisance for Color ReID on

FaceBody. However, all sequences are recorded in the same room, so the background should have

limited effect. Instead, for RGB images, we use the body index to extract a rectangular region

around the person and add a 20–pixel margin to ensure that the person’s silhouette lies within the

bounding box.

Comparisons (Table 4.4). Although FaceBody poses new challenges, as the subjects present

pose variation and partial occlusions, Depth ReID is consistently more reliable than Color ReID.

Part of this improvement can be attributed to the precise background subtraction based on body

index in case of depth, which yields very accurate global shape information.
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Figure 4.6: Example sequence along with the inferred Bernoulli parameter p = fw(gt; θw) ∈ [0, 100](%)

using a trained Depth ReID model with attention on FaceBody. Frames that are characterized by noisy

measurements, uncommon pose and partial occlusions are likely to contribute less in multi-shot prediction,

based on the estimated weight by the temporal attention unit.

Multi-shot evaluation. Following, we leverage on multiple frames from each sequence to make

k-shot predictions. In order to make the evaluation more challenging, we allow to use only k = 3

consecutive frames per evaluation. This is a realistic scenario where a tracked person can be

occasionally occluded or there is lack of motion. Most testing sequences have length N in the

order of 200 frames. Our protocol is to perform 100 runs for each sequence where the start frame

is chosen uniformly at random in {1, . . . , N−k+1} range. In Table 4.4 we show the performance

of Depth ReID with LSTM units and temporal attention.

Inspecting the temporal attention unit. After inspecting the estimated Bernoulli parameter

p = fw(gt; θw) on unknown testing data, we observed that large variations are possible within

one sequence, even between neighboring frames. Lower values are usually associated with noisy

frames as in the example sequence in Fig. 4.6, or with challenging human pose and partial occlu-

sions which are not well represented in the training set.
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4.3.7 DPI-T dataset

Depth ReID is trained on DPI-T following the procedure described in Sec. 4.2.3 and the official

evaluation protocol. For the multi-shot setting all available frames are used for a single sequence

prediction. Although the persons on DPI-T have many more appearances (5 different sets of clothes

on average), the sequences are shorter than in the other two datasets (approximately 16 frames per

sequence).

In Table 4.5 we demonstrate our model’s performance compared to Haque et al. [66]. For

single-frame predictions we use only the encoder fCNN with its attached classifier. For multi-shot

mode with averaging in row 4, we simply calcuate the average of fCNN outputs over each sequence

frame. Next in rows 5 − 7 we show results with LSTM units attached on the encoder. As for the

last row, each sequence’s class posterior is computed as the weighted sum of the model’s outputs

ct for the sequence length K, based on the inferred weights w1, . . . , wK . In rows 5 and 6 all frames

contribute equally. Note that the RNN with constant Bernoulli p = 0.5 performs worse than the

model which learns p. It is to be expected that learning the parameter p via the attention unit

enforces learning better models, as frames are preserved or dropped out based on how likely they

are to increase the accumulated reward and not uniformly at random such as when p = 0.5.

Setting Method top-1 top-5

Single-shot
3D RAM [66] 47.5 —

Depth ReID, single-shot 62.3 93.6

Multi-shot

4D RAM [66] 55.6 —

Depth ReID, averaging 72.6 96.4

Depth ReID, RNN with Bernoulli p=0.5 73.9 96.4

Depth ReID, RNN with learned Bernoulli p 75.9 96.0

Depth ReID, RNN and attention 77.5 96.0

Table 4.5: Re-identification accuracy (%) on DPI-T [66].
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4.4 Discussion

We have presented a novel framework for person re-identification in the absence of RGB infor-

mation, hence in the dark. Our pipeline leverages grayscale encodings from depth measurements,

normalized, offset and masked using skeleton information and morphology, in order to learn depth

representations with a recurrent deep convolutional architecture. We tackle the small sample size

problem with regularizers and by introducing a temporal attention unit that allows efficient and

scalable training with video sequences. The entire model can be trained end to end with a hy-

brid supervised loss under the principles of maximizing the conditional probability of the true

class identity and the REINFORCE rule. Note that the model can be extended to calculate spatio-

temporal attention regions, albeit not necessary in our pipeline as we use skeleton data to detect

the region of interest, i.e., the person.
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CHAPTER 5

Learning to Discriminate in the Wild: Representation-Learning

Network for Nuisance-Invariant Visual Comparison

5.1 Introduction

Representation-learning architectures have shown the ability to learn class-specific variability de-

spite significant nuisance variability [56, 96, 134, 157, 162]. The problem of nuisance variability

is particularly acute in Computer Vision, where even the same object or scene can yield a large

variety of images depending on vantage point, illumination and partial occlusion, which can be

nuisance factors for certain tasks [147]. This point has been recently emphasized by Poggio [130],

who set forth the hypothesis that much of the ventral stream is tasked with managing the infinite

amount of nuisance variability, and by Sundaramoorthi et al. [155], who showed that the intrin-

sic variability of objects in images is infinitesimal compared to nuisance variability. These theses

would seem to challenge the possibility that nuisance variability in images can be learned away

by even powerful learning architectures. In this manuscript, we put this challenge to the test by

establishing two visual classification tasks, and deploying a fairly simple representation-learning

architecture to tackle them.

The first task we select is the determination of co-visibility. This is a binary decision where,

given two video frames, we wish to determine for each pixel whether or not back-projects onto

the same point in physical space. This completely eliminates intrinsic variability, because the

underlying scene is known to be the same and the diversity between images of the same scene

is entirely attributable to nuisance factors such as different vantage points and illumination. We

deploy a scheme based on a factored Gated Restricted Boltzmann machine [117] and joint Super-

pixels [122] of different scales to learn away such nuisance variability. The model is trained with
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pairs of random images which are related by specific transformations. During testing violation of

co-visibility occurs in regions of an image where corresponding patches between two frames are

not recognized as sufficiently similar according to the model.

The second problem we deal with is segmentation in a single image, which is also cast as

binary classification. Class variability makes nuisance elimination more challenging, but we show

that a Gated RBM coupled with Normalized Cuts [143] are able to yield a semantic segmentation.

The general framework is presented in Sec. 5.2, Sec. 5.3 demonstrates the experimental setting and

comparative results on each problem and Sec. 5.4 consists of our conclusions. The upshot is that,

even though in theory nuisances account for almost all the variability in the data [155], in practice

the finite cardinality of data space acts as a regularizer, and since the classification occurs in data

space, nuisance variability can be learned away.

5.1.1 Related work

The determination of co-visibility is related to the general problem of correspondence, that un-

derlies a significant portion of Computer Vision research [140]. When correspondence is trivial,

for instance when multiple images of the same scene are taken from a stationary camera at dif-

ferent time instants, this problem is known as background subtraction [129] and violations of

co-visibility are due to the presence of moving foreground objects. In the more general setting, the

determination of co-visibility is entangled with correspondence, so this problem relates to optical

flow, another broad concern in the Computer Vision literature [7, 11, 12, 69, 152, 156]. Occlu-

sion detection is often formulated as classification problem, where motion estimation is performed

in a discrete setting ([94, 103]), which is a well-known difficult problem. Occlusion detection

is closely related with occlusion boundary detection, where estimations are performed in video

sequences [69, 78, 106, 152, 156] or single images [72, 137]. Martin et al. [113] fuse multiple

cues from local image measurements to precisely infer the object boundaries in natural scenes.

We compare with the occlusion regions learning work of Humayun et al. [74], who use various

hand-crafted visual features, a subset of which is selected for each testing pair within a Random

Forest-based framework. We also compare with the optical flow estimation of Ayvaci et al. [11].
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5.1.2 Contributions

By choosing an appropriate training set, the network becomes insensitive to variability due to cer-

tain factors (“nuisances”) like rotation and illumination changes, so the residual is informative for

the rest factors, such as co-visibility in our occlusion detection setting or interclass variability for

segmentation. We use a large training set which has been generated by applying certain transforma-

tions to random binary images. In our occlusion detection method there is no constraint regarding

the order of the frames or the baseline range. There are no strict assumptions as for rigid motion or

regarding the orientation of occlusion boundaries and the shape of occluded regions. However, dis-

criminating between occlusions and disocclusions has a small post-processing overhead compared

to flow algorithms. When taking the superpixel maps into account, our occlusion detection algo-

rithm often outperforms recent methods based on optical flow and miscellaneous visual features.

Although training may take hours depending on the size of the training set (∼ 5 hours for 30, 000

image pairs with size 13× 13 on a standard laptop), it is performed once and offline, and then the

testing (e.g., 640 × 480 image pairs) takes only a few seconds. Finally, we propose applying our

network on image segmentation and demonstrate how invariance and pairwise patch comparisons

can yield a semantically meaningful segmentation.

5.2 Framework for Nuisance-Invariant Visual Comparison

Boltzmann machines are probabilistic bidirectionally connected networks that capture important

information of an unknown distribution based on samples from this distribution. However, their

learning is computationally consuming. Restricted Boltzmann machines impose the probabilistic

restriction of statistical independence between variables of same layer given the state of variables

of all other layers and simplifies the learning process. The 2-layer architecture can be modelled as

bipartite undirected graph.
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5.2.1 Gated Restricted Boltzmann machine

A Gated Restricted Boltzmann machine is a parametrized generative model representing a proba-

bility distribution. Given some observations (i.e., the training data), learning means adjusting the

parameters so that the represented distribution fits the training data as well as possible. The Gated

RBM consists of 3 layers of binary variables: two layers of visible units that correspond to the

observations and one hidden layer, which encodes dependencies between two observable layers.

Therefore, this model can capture the relationship (modulo a set of factors that it is trained to be

invariant to) and in turn “similarity” between two images.

A Gated RBM consists of K hidden units H = (H1, . . . , HK) that capture the dependencies

between two layers of observed variables with units X = (X1, . . . , XI) and Y = (Y1, . . . , YJ).

Adopting binary random variables, (X, Y, H) takes values (x, y, h) ∈ {0, 1}I+J+K . The image

transformations do not include arbitrary motions of individual pixels, so the three-way interac-

tions among the layers can be modeled as the product of all possible two-way interactions with F

factors [117]. Thus, the joint probability distribution is p(x,y,h) = 1
Z
e−E(x,y,h;θ) with energy

E(x,y,h; θ) = −
F∑

f=1

(
I∑

i=1

uifxi)(
J∑

j=1

vjfyj)(
K∑
k=1

wkfhk)−
I∑

i=1

aixi−
J∑

j=1

bjyj −
K∑
k=1

ckhk, (5.1)

where θ = {U,V,W, a,b, c} are the model parameters and Z(θ) =
∑

x,y,h e
−E(x,y,h;θ) is the

partition function. Instead of I × J × K interaction tensor, three matrices with sizes I × F ,

J × F and K × F are factorized in a common product. Hence, the order of parameter complexity

decreases from cubic to square. For all i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . , K} and for all

f ∈ {1, . . . , F}, uif , vjf and wkf are real-valued weights associated with the f factor and i, j or k

unit, correspondingly. Weight matrices U, V and W consist of “filters” {uf ,vf ,wf , f = 1 . . . F}.

Additionally, ai, bj and ck are real-valued bias terms associated with the ith and jth visible units

and kth hidden unit, respectively. The model is illustrated in Fig. 5.1.

Intuitively the first energy term represents a similarity score, as its high value coincides with

co-occurrence of high projection scores of images x, y and some subset of hidden variables h on

F factors. The filters’ shape and the semantics of similarity inferred by the model depend on the

training set. For example, after training with pairs of images which are related by affine transfor-
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Figure 5.1: Graphical representation of a Gated Restricted Boltzmann machine (RBM).

mations, the hidden variables capture “elementary” dependencies between the observed variables

like translational shifts, planar rotations and other small-dimensional (local) group transforma-

tions. In that case, two testing images will be considered as “similar” by the model when they are

almost identical or parts of them are related by affine transformations (of magnitude similar with

these ones appearing on the training data).

The symmetric model is a special case where the weights of both visible layers are equal, that

is {uif = vif , i = 1 . . . I, I = J}. It operates a complex transformation that is determined by

the hidden layer and maps a set of representations of one visible layer to the other. The repre-

sentations are projections on a common space, which topologically “compensates” the transfor-

mations that appear on the training set. More generally, the non-symmetric model is essentially

a mapping induced by the hidden layer between different, but related (according to the training

set) representations of the observable layers. In Fig. 5.2, we show the observed layers’ filters

{uf ,vf , f = 1 . . . F, F = 100} when the model is trained exclusively with shifted and scaled im-

age pairs, respectively. The non-symmetric Gated RBM can be applied on image pairs of different

size (I ̸= J), while the numbers of hidden variables K and factors F can be selected by the user.

We mainly experimented with values: I = J = 13 × 13 = 169 and I = J = 26 × 26 = 676,

K = 50–200, F = 100–200.
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Figure 5.2: Filters generated when training exclusively with shifted (top) and scaled (bottom) random

binary images.

5.2.2 Conditionals and Marginals

The complexity advantage of Restricted Boltzmann machines is that all variables of one layer are

independent given the state of all other layers’ variables. Thus, the joint conditional distribution is

the product of all conditional distributions and calculations can be done in parallel. The conditional
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distributions can be factorized as:

p(x|y,h) =
I∏

i=1

B(xi;σ[
F∑

f=1

uif (
J∑

j=1

vjfyj)(
K∑
k=1

wkfhk) + ai])

p(y|x,h) =
J∏

j=1

B(yj; σ[
F∑

f=1

vjf (
I∑

i=1

uifxi)(
K∑
k=1

wkfhk) + bj])

p(h|x,y) =
K∏
k=1

B(hk; σ[
F∑

f=1

wkf (
I∑

i=1

uifxi)(
J∑

j=1

vjfyj) + ck]) (5.2)

where B(x; p) is the pdf of a Bernoulli random variable x with parameter which is function of the

other two layers and σ(x) = 1
1+e−x is the sigmoid activation function.

The distribution over an image pair (x, y) is taken by marginalizing the joint distribution over h:

p(x,y) =
∑

h∈{0,1}K
p(x,y,h). (5.3)

The number of possible h increases exponentially with the number K of hidden variables, making

the computation intractable for reasonable values. However, approximating the unknown distribu-

tion with Gibbs sampling allows us to work only with the conditionals. This fact, along with the

conditional independence among variables in each layer of Gated RBM given the other two layers,

make computational cost reasonable. Additionally, a GPU-based implementation1 of the model

speeds up the training process by an order of magnitude.

5.2.3 Maximum Likelihood Learning

Given a set of i.i.d. training examples D = {(x(1),y(1)), . . . (x(N),y(N))}, the model parameters

θ are learned via an unsupervised learning framework. The log-likelihood given observed training

pairs D is maximized:

max logL(θ|x,y) = 1

N

N∑
n=1

log p(x(n),y(n); θ). (5.4)

1Publicly available online from R. Memisevic and J. Susskind at http://learning.cs.toronto.edu/ rfm/code/gbmcuda.py.
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Algorithm 2 Training with 3-way Contrastive Divergence

Input: Gated RBM (X,Y,H), training batch D.

Output: Weights update ∆θ.

Initialize all weights ∆θ = 0.

for all (x,y) ∈ D do

(x(0),y(0))← (x,y)

for t = 0, . . . , k − 1 do

in random order:

∀k = 1, . . . , K sample h
(t)
k ∼ p(hk|x(t),y(t))

∀i = 1, . . . , I sample x
(t+1)
i ∼ p(xi|h(t),y(t))

∀j = 1, . . . , J sample y
(t+1)
j ∼ p(yj|h(t),x(t))

end for

for all weights do

∆θ = ∆θ −
∑

h p(h|x(0),y(0))∂E(x(0),y(0),h)
∂θ

+
∑

h p(h|x(k),y(k))∂E(x(k),y(k),h)
∂θ

end for

end for

For a single training pair (x,y) the log-likelihood gradient w.r.t. a single model parameter θ is:

∂ logL(θ|x,y)
∂θ

=
∂ log( 1

Z

∑
h e

−E(x,y,h;θ))

∂θ

=
∂(log

∑
h e

−E(x,y,h) − log
∑

x,y,h e
−E(x,y,h))

∂θ

= −
∑
h

p(h|x,y)∂E(x,y,h)

∂θ
+

∑
x,y,h

p(x,y,h)
∂E(x,y,h)

∂θ
. (5.5)

By combining Eqs. 5.4 and 5.5, the mean of this derivative over the training set can be expressed

as:

1

N

N∑
n=1

∂ logL(θ|x,y)
∂θ

=

⟨
∂E(x,y,h)

∂θ

⟩
p(h|x,y)q(x,y)

−
⟨
∂E(x,y,h)

∂θ

⟩
p(x,y,h)

. (5.6)

The second term in Eq. 5.6 is intractable, as it is computed over all configurations (x,y,h) (in-

creases exponentially with number of units I +J +K). However, Gibbs sampling of the unknown
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distribution gives a tractable approximation. Samples are drawn alternatingly from the conditional

distributions p(h|x,y), p(x|h,y) and p(y|h,x) in random order and the sampling process is ter-

minated in k steps (k = 1 works well in practice [70]). Given the tri-partite structure of the model,

the learning process has been called as 3-way Contrastive Divergence [157] and is summarized in

Alg. 2.

5.2.4 Distance function

The model can be trained with pairs of images related by many transformations. This process

makes it invariant over all these transformations, so an appropriate similarity score given by the

model can potentially discriminate between similar/non-similar images modulo these factors. The

log-likelihood that is assigned to a testing pair (x,y) is:

log p(x,y) = −logZ+
I∑

i=1

aixi+
J∑

j=1

bjyj+
K∑
k=1

log(1+eck+
∑F

f=1 wkf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj)). (5.7)

The normalizing term logZ is intractable, as it includes marginalization over x, y and z. Fortu-

nately, when we compare pairs of images, this term is common and can be eliminated. However,

to use the unnormalized likelihood as distance of two images would be problematic, as a single

pair (x,y) could be made to have arbitrarily small likelihood, e.g., by rescaling both images with

some constant. To deal with that the following distance function is used:

d(x,y) = −logp(x,y)− logp(y,x) + logp(x,x) + logp(y,y), (5.8)

as was first proposed in [163] for a RBM and was also deployed in [157]. The normalizing terms

are eliminated, and the likelihood of any single image is normalized for both observable layers.

Strictly speaking, d is a semi-metric, as the triangle inequality is not guaranteed to hold among

three testing images.

5.3 Experiments

After training with a large dataset of image pairs which are related by a specific set of transfor-

mations, the model is invariant with respect to them and the distribution of distances calculated by
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Eq. 5.8 for a set of testing image pairs can be informative for determining other factors, such as

occlusions and interclass variability.

5.3.1 Occlusion Detection

The model is trained using Alg. 2 with pairs of random images related by affine transformations,

shifts and rotations, scale and illumination variation. The first factors intend to deal with different

vantage points where these images are captured from, while the latter one with different lightning

conditions. In our experiments the Gated RBM’s observable layers have size either 13 × 13 or

26×26 and the range of pixel-wise transformations on the training set varies between 3−6 pixels.

In order to obtain the results of this section, F = 200 filters and K = 100 hidden variables were

used. The model was trained over 10, 000 epochs, where the training set included 10, 000 purely

shifted, 5, 000 purely rotated images, 5, 000 general affine transformations, 5, 000 illumination

variant and 5, 000 scaled pairs. Affine transformations are applied to random, binary training

images, which empirically proved to give equally effective model compared to when training with

patches cropped from natural images. Applied transformations is all that counts instead of specific

information of any single image/visible layer. Illumination-variant training images are extracted

from PHOS dataset [168]. Batch size D = 100–1, 000 and 5, 000–10, 000 epochs were used in

these experiments.

During testing, two frames were partitioned into d× d densely overlapping patches (d = 13 or

d = 26) and Eq. 5.8 was used to estimate the “distance” of corresponding patches according to the

model. After training over all these factors, which are nuisances in our setting, d(x,y) provides

a score to quantify co-visibility in a testing pair (x,y) because occlusions are the main cause

of disagreement. Thresholding the distance map yields the binary occlusion map. Comparisons

are made at the patch level, but the resulting distance is applied only to the central pixel of each

patch. Overlapping patches are deployed, while all comparisons can be performed in parallel. Our

framework was tested on sequential video frames taken from Berkeley Motion Segmentation [19],

Middlebury [12] and UCL Optical Flow [7] datasets.

A baseline algorithm can be built where simple differences of average intensities over 13 ×

89



Figure 5.3: Occlusion detection between frames 7 and 8 of “Cars8” sequence of the Berkeley Motion

Segmentation dataset. The occlusion (and disocclusion) areas are displayed on both frames. The image

pair on top is obtained with the baseline algorithm, which gives many false alarms on turbulent and with

variant lightning scene areas, such as the road and the car’s front surface. The image pair below displays

our detection having used the aggregate superpixel distance from Eq. 5.9 and m = 8 superpixel maps.

13 patches are extracted and thresholded. This procedure yields a large number of false alarms,

because any movement or lightning change in the background or the occluder affects the “naive”

patch distance. On the other hand, our network’s invariance over all these transformations provides

background/foreground subtraction and the residual is mostly occlusions. Fig. 5.3 demonstrates

this concept.

Toward superpixels: Training the model with bigger visible layers offers invariance over larger

transformations, but it typically gives less accurate predictions close to the boundaries of the oc-
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clusion regions, as the model needs to examine a bigger patch and deal with more nuisances. It can

drive occlusion detection though by providing a mask that offers subtraction of the larger nuisances

and then testing with smaller visible layers refines the occluded regions. Moreover, a deeper archi-

tecture would not be especially helpful, because the primary purpose of this network is to perform

image comparison modulo small deformations. It does not intend to simulate complicated transfor-

mations like facial expressions or body poses. However, empirical work suggests that the network

per se can give decent, but not competitive results, mainly because of computational resources lim-

itations. Training a very large Gated RBM with thousands of hidden variables and filters over all

possible transformations in theory could give an oracle that could eliminate all possible nuisances

and in turn discriminate occlusions with infinitesimal classification error. In practice, though, for

a computationally tractable solution that yields competitive occlusion detection, we turn to super-

pixels.

Superpixels are basically regions of near-uniform intensity on the image domain and our con-

jecture is that with high probability their pixels back-project to points in the scene that belong to

the same object. Therefore, it is natural to resolve for entire superpixels whether they are co-visible

or not. Averaging the model’s distances over the whole superpixel is a mechanism that is robust

against outliers and gives accurate occlusion boundaries. However, superpixel partitions on any

single image are not useful when working with image pairs. Therefore, we design a mechanism

of jointly extracting superpixels in two images (one common superpixel partition) in order to have

pixel groups that faithfully “follow” the boundaries on both frames and share common appear-

ance/texture. The superpixel code [122] is based on the Boundary Detector from [113], and in

order to extract joint superpixels we modified it adopting as edge probability map the maximum of

the two images’ probability maps and choosing as angle θ for every pixel (i, j) the corresponding

angle θ1(i, j) or θ2(i, j) of the image with dominant gradient there. In order to be less dependent

on the algorithm’s randomness and process in different scales, the maximum number of pixels per

superpixel, the number of eigenvectors and other parameters, m superpixel partitions for each test-

ing image pair are extracted according to various values for the above-mentioned parameters and
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Figure 5.4: This figure demonstrates the influence of superpixel information in the occlusion detection task.

It shows results from the “RubberWhale” sequence of Middlebury dataset (frames 7 and 14). At the first

row we see the occlusion detection without and with superpixel information considered, respectively. The

occlusion regions consist of fewer, more compact connected components, have fewer outliers, and fit better

on the occluders’ boundaries. At the second row, the first image displays the joint superpixel partition, while

next the PR curves are illustrated.

averaged the distance scores over all. The aggregate superpixel score is defined as:

daggregate(i) =
1

m

∑
m maps

distm(i) ∀i ∈ I, (5.9)

where distm(i) is the average score over the superpixel in map m that contains pixel i.

Figs. 5.4 shows via PR curves how occlusion detection improves when superpixels are de-

ployed. Fig. 5.5 includes comparisons with [11] and baseline algorithms based on a one-layer

RBM and a 2-layer perceptron, which are trained on concatenation of same training pairs that are
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Figure 5.5: Above we compare our algorithm with an optical flow algorithm [11] on the “Cars8” sequence.

Our method (right) gives accurate occlusion detection, especially on areas with varying illumination, such as

the windscreen and the shadow of the car. Below, the PR curves (extracted on 3 pairs of consecutive frames

from different sequence instances) demonstrate improved detection with superpixels, compared to [11] and

baseline algorithms based on a one-layer RBM and a two-layer perceptron.

deployed in GRBM’s training. The perceptron is trained discriminatively in a binary prediction

task (i.e., either the concatenated pair consists of patches with the same appearance except for lo-

cal affine transformations and illumination variation or not, which is a strong cue for occlusion),
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Figure 5.6: The left image pair compares our method with an algorithm that considers both flow

and boundary features [74] on the hard, short-baseline “Venus” sequence from the Middlebury

dataset. Our method (right) is able to disregard most edges which are not occlusion boundaries.

However, although superpixels drive the occlusion boundaries, flow features still occasionally dis-

play better behavior on boundaries. In the right image pair we compare our algorithm with a

state-of-the-art optical flow algorithm [11] on the “Cars8” sequence. Our method (right) is more

accurate, especially on areas with varying illumination, such as the windscreen and the car shadow.

Venus RubberWhale Tsukuba Text1 BrickBox1t1

r [94] 0.60 0.23 0.44 0.82 0.51

p [94] 0.63 0.31 0.58 0.68 0.49

p [74] 0.69 0.47 0.85 0.88 0.96

p (ours) 0.75 0.81 0.86 0.91 0.92

Table 5.1: Comparison of our occlusion detection algorithm with [94] and [74] on Middlebury and UCL

Optical Flow sequences. The comparison is in terms of precision (p) for the same recall values (r).

where random image pairs are used as negative samples. It seems that explicitly modeling 3-way

interactions without learning any information of included individual images performs better on this

specific task.

In Table 5.1 we present a quantitative comparison of our occlusion detection with [94] and [74]

at sequences from Middlebury and UCL Optical Flow datasets in terms of precision and recall

statistics. Kolmogorov and Zabih [94] designed an algorithm to detect occlusions in stereo image

pairs, and therefore, unsurprisingly, their method can not effectively deal with transformations

more complex than the horizontal translations, which commonly appear in these sequences. We
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Baseline based on differences of

intensity averages patchwise

Gated RBM trained on shifts

Gated RBM trained on shifts and

rotations

Gated RBM trained on shifts,

rotations, affine, scale and

illumination variation

Gated RBM trained on shifts,

rotations, affine, scale and

illumination variation, plus

considering superpixel maps

Figure 5.7: Our occlusion detection algorithm for different transformations and against a baseline

algorithm between frames 7 and 8 of “Cars8” sequence of Berkeley Motion Segmentation dataset.
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use it as a baseline algorithm like in Humayun et al. [74]. The latter ones leverage various flow

and appearance features within a learning framework. However, they have many false alarms on

edges that are not occlusion boundaries, which originate from the fact that edge detection is one of

their component. This behavior becomes obvious also through the qualitative comparison in Fig.

5.6. Finally, in Fig. 5.7 we plot the performance of our occlusion detection algorithm against an

increasing number of transformations deployed during the training stage.

5.3.2 Image Segmentation

In an effort to further investigate network’s capability, we challenge it in a binary classification

task with intrinsic class variability, image segmentation from a single frame. The distance function

from Eq. 5.8 is now used as an estimator of dissimilarity between neighboring patches in a single

image. The similarity “discontinuities” (i.e., pairs that have a lower similarity score compared to

others) is a cue of object boundaries. After thresholding the distance map, the task becomes a

binary decision problem. When a pair is dissimilar according to our comparison framework, their

common boundary is considered as object boundary.

The model is trained over the same spectrum of transformations that were used in occlusion de-

tection (shifts, rotations, affine, illumination, scale) in the same manner as before. After obtaining

a binary map of similar/dissimilar neighboring patch pairs, the Normalized Cuts algorithm [143] is

used for the final segmentation, where instead of using boundary, brightness or spatial information

in the input matrix W , we use Gated RBM’s dissimilarity scores:

∀p(i1, j1), p(i2, j2) ∈ P :

w12 =


d12, if |i1 − i2| = 0, r, 2r, 3r or |j1 − j2| = 0, r, 2r, 3r

0, otherwise
(5.10)

where P is an image partition in overlapping patches, r is the patch size (r = 13 in these exper-

iments) and p(i, j) is patch centered on pixel (i, j). Our network is nuisance invariant, thereby

capable of ignoring shadow and changing illumination effects and detecting similar textons at dif-

ferent scales, positions and angles. The final segmentation is semantically sensible, in view of the

fact that mainly object boundaries are detected instead of other edges which are false alarms in this
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(a) Normalized cuts

(b) Normalized cuts guided by nuisance-invariant patch similarity

Figure 5.8: These figures qualitatively demonstrate “semantic” image segmentation. Normalized Cuts (a)

and our method (b) are compared. In the left pair, as expected, the final segmentations are similar, but our

algorithm successfully disregards any boundary on the front line of the yard wall because a wall exists on

both sides. In the right pair Normalized Cuts give a segmentation that follows the shadows. Our algorithm,

being illumination invariant, crosses the shade while following the building wall.

setting. Fig. 5.8 demonstrates Normalized cuts examples without (up) and with (down) nuisance-

invariant patch similarity. A less sensitive threshold results in a finer segmentation. The images

are taken from the Make3d Cornell dataset 1 [137].
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5.4 Discussion

We have empirically tested the hypothesis that a fairly simple learning architecture can satisfacto-

rily manage the nuisance variability in the imaging process. To this end, we have established two

binary classification tasks; one with intrinsic variability (in segmentation, patches from the same

object present intraclass variability) and one without intrinsic variability (in occlusion detection,

the underlying scene is known to be the same). We have shown empirically that our network man-

ages to reduce nuisance variability significantly, thus challenging recent work that suggests that

nuisance variability accounts for most of the complexity in imaging data [155].

Using multi-scale joint superpixels, our framework provides competitive occlusion detection

that in many cases outperforms recent algorithms based on optical flow and boundary features.

However, hand-crafting features is a more complicated and time-consuming process. A Gated

RBM is capable of learning effective features automatically, while we can specialize the setting

and the nuisances that we need to deal with per application by providing appropriate training set.

It should be stressed that our method has no correspondence step in the preprocessing. Given

two images, it targets to detect occluded regions and ignore any false alarms arising from local

deformations. Inaccuracy in correspondence that is caused by motion is handled by our algorithm

to some extent given its invariance in properties such as translations, rotations and scale.
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5.5 Appendix - Mathematical Proofs

5.5.1 Proof of Eq. 5.2 (conditional distributions)

Let x−l denote the state of all units in layer x except for the lth one and then define the quantities:

αl(y,h) := −
F∑

f=1

ulf (
J∑

j=1

vjfyj)(
K∑
k=1

wkfhk)− al,

β(x−l,y,h) := −
F∑

f=1

(
I∑

i=1,i ̸=l

uifxi)(
J∑

j=1

vjfyj)(
K∑
k=1

wkfhk)−
I∑

i=1,i ̸=l

aixi −
J∑

j=1

bjyj −
K∑
k=1

ckhk.

Given the definition of the energy function in Eq. 5.1, we have E(x,y,h) = β(x−l,y,h) +

xlαl(y,h). Thus:

p(Xl = 1|y,h) = p(Xl = 1|x−l,y,h) =
p(Xl = 1,x−l,y,h)

p(x−l,y,h)

=
1
Z
e−E(Xl=1,x−l,y,h)

1
Z
e−E(Xl=1,x−l,y,h) + 1

Z
e−E(Xl=0,x−l,y,h)

=
e−β(x−l,y,h)−αl(y,h)

e−β(x−l,y,h)−αl(y,h) + e−β(x−l,y,h)
=

e−β(x−l,y,h) · e−αl(y,h)

e−β(x−l,y,h) · (e−αl(y,h) + 1)

=
1

1 + eαl(y,h)
= σ(−αl(y,h)) = σ[

F∑
f=1

ulf (
J∑

j=1

vjfyj)(
K∑
k=1

wkfhk) + al],

where σ(x) = 1
1+e−x is the sigmoid activation function.

Given the conditional independence of variables X, the joint conditional distribution is written as:

p(x|y,h) =
I∏

i=1

B(xi; σ[
F∑

f=1

uif (
J∑

j=1

vjfyj)(
K∑
k=1

wkfhk) + ai]),

where B(x; p) is the pdf of a Bernoulli random variable x with parameter p, i.e.:

B(x; p) =


p, if x = 1.

1− p, if x = 0.

with p = σ[
∑F

f=1 uif (
∑J

j=1 vjfyj)(
∑K

k=1wkfhk) + ai]. Similar proofs hold for the other two

expressions of Eq. 5.2.
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5.5.2 Proof of Eq. 5.7 (marginal distribution of the visible variables)

The conditional independence of each layer’s units given the other two layers simplifies the calcu-

lations:

p(x,y) =
1

Z

∑
h

e−E(x,y,h)

=
1

Z
e
∑I

i=1 aixi+
∑J

j=1 bjyj
∑
h1

. . .
∑
hK

K∏
k=1

ehk(ck+
∑F

f=1 wkf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj))

=
1

Z
e
∑I

i=1 aixie
∑J

j=1 bjyj

K∏
k=1

∑
hk

ehk(ck+
∑F

f=1 wkf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj))

=
1

Z

I∏
i=1

eaixi

J∏
j=1

ebjyj
K∏
k=1

(
1 + eck+

∑F
f=1 wkf (

∑I
i=1 uifxi)(

∑J
j=1 vjfyj)

)
.

Then the log-likelihood is calculated as:

log p(x,y) = C + log
I∏

i=1

eaixi + log
J∏

j=1

ebjyj + log
K∏
k=1

(
1 + eck+

∑F
f=1 wkf (

∑I
i=1 uifxi)(

∑J
j=1 vjfyj)

)
= C +

I∑
i=1

aixi +
J∑

j=1

bjyj +
K∑
k=1

log
(
1 + eck+

∑F
f=1 wkf (

∑I
i=1 uifxi)(

∑J
j=1 vjfyj)

)
.

where C = −logZ.
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CHAPTER 6

Summary of Findings

In this thesis we provide a thorough empirical analysis of the robustness of concurrent deep Con-

volutional Neural Networks (CNNs) with respect to nuisance transformations, such as domain-size

scaling. Based on our discovery that a CNN is not as effective in dealing with simple group trans-

formations, we propose techniques to alleviate this problem that span three directions: algorithmic

deployment and model design for CNNs, and learning away nuisances with a Gated Restricted

Boltzmann Machine (RBM). Next, we concisely summarize our findings on these directions.

Conditioning CNNs on estimated nuisances

• We conduct an empirical study to test the ability of CNNs to reduce the effects of nuisance

transformations of the input data, such as location, scale and aspect ratio. We isolate factors by

adopting a common convolutional architecture either deployed globally on the image to compute

class posterior distributions, or restricted locally to compute class conditional distributions given

location, scale and aspect ratios of bounding boxes determined by proposal heuristics. In theory,

averaging the latter should yield inferior performance compared to learned marginalization inside

the model. Yet empirical evidence suggests the converse, leading us to conclude that – at the

current level of complexity of convolutional architectures and scale of the data sets used to train

them – CNNs are not very effective at marginalizing nuisance variability (Chapter 2).

• We quantify the effects of context on the overall classification task and its impact on the

performance of CNNs, which justifies the widespread use of object proposals in the detection

pipelines. Next, we extend regular data augmentation with proposals in a adaptive, data-driven

fashion, we propose a novel pruning technique based on Rényi entropy and improve the end-to-

end classification performance to state-of-the-art levels. Additionally, we test our hypothesis on
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a wide-baseline matching task using the Oxford and Fischer datasets, where we perform domain-

size pooling around regions that are selected by a generic low-level detector. Finally, we explore

the use of our sampling techniques in a dense CNN testing scenario, where multiple regions share

weights at the convolutional part of the model and their testing is conducted in one single pass.

In that case, we achieve comparable performance gains in Imagenet Classification, in a fraction of

time compared to our method that is based on region proposals (Chapter 2).

• We present a method to generate object proposals, in the form of bounding boxes in a test

image, to be fed to a classifier such as a CNN, in order to reduce test time complexity of object

detection and classification. We leverage on filters learned in the lower layers of CNNs to design

a binary boosting classifier and deploy higher convolutional CNN layers for a linear regressor in

order to discard as many windows as possible that are unlikely to contain objects of interest. We

test our method against competing proposal schemes, and end-to-end on the Imagenet detection

challenge. We show state-of-the-art performance when at least 1000 proposals per frame are used,

at a manageable computational complexity compared to alternate schemes that make heavier use

of low-level image processing (Chapter 3).

•We target person re-identification (ReID) from depth sensors such as Kinect. Since depth is

invariant to illumination and less sensitive than color to day-by-day appearance changes, a natural

question is whether depth is an effective modality for Person ReID, especially in scenarios where

individuals wear different colored clothes or over a period of several months. We explore the use

of recurrent CNNs for learning high-level shape information from low-resolution depth images. In

order to tackle the small sample size problem, we use regularization and propose a hard temporal

attention unit. The whole model, along with newly introduced attention layer can be trained end to

end with a hybrid supervised loss. We carry out a thorough experimental evaluation of the proposed

method on three person re-identification datasets, which include side views, views from the top and

sequences with varying degree of partial occlusion, pose and viewpoint variations. To that end, we

introduce a new dataset with RGB-D and skeleton data. In a scenario where subjects are recorded

after three months with new clothes, we demonstrate large performance gains attained using Depth

ReID compared to a state-of-the-art Color ReID. Finally, we show further improvements using the

temporal attention unit in multi-shot setting (Chapter 4).
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Dealing with nuisances in the CNN architecture

• We study the structure of representations, defined as approximations of minimal sufficient

statistics that are maximal invariants to nuisance factors, for visual data subject to scaling and oc-

clusion of line-of-sight. We derive analytical expressions for such representations and show that,

under certain restrictive assumptions, they are related to features commonly in use in the computer

vision community. Deep convolutional architectures can be understood as implementing succes-

sive approximations of an optimal representation by stacking layers of (conditionally) independent

local representations, which have been shown to increasingly achieve invariance to large defor-

mations. Thus, as it has been demonstrated for SIFT, we conjectured that pooling over domain

size would improve the performance of a convolutional network as well. Domain-size pooling

transforms the convolutional neural networks to be scale invariant in the convolutional operator

level. We present a reference implementation and experimental results for DSP-CNN in Pascal

2007 Classification, which show a modest improvement over the baseline (Appendix A).

Learning away nuisance variability

•We test the hypothesis that a representation-learning architecture can train away the nuisance

variability present in images, owing to noise and changes of viewpoint and illumination. First,

we tackle occlusion detection, which is a binary classification task with no intrinsic variability. It

amounts to the determination of co-visibility from different images of the same underlying scene.

Our network, a Gated Restricted Boltzmann Machine (RBM), learns away the nuisance variability

appearing on the background scene and the occluder, which are irrelevant with occlusions, and

in turn is capable of discriminating between co-visible and occluded areas by thresholding a one-

dimensional semi-metric. Our method, combined with Superpixels, outperforms algorithms using

features specifically engineered for occlusion detection, such as optical flow, appearance, texture

and boundaries. We further challenge our framework with a more complex task, image segmenta-

tion from a single frame. It is cast as binary classification too, but here we also have to deal with

the intrinsic variability of the scene objects. We build a similarity map over all patch pairs based

on Gated RBM scores and provide a semantic segmentation using Normalized Cuts (Chapter 5).
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APPENDIX A

Visual Scene Representations: Contrast, Scaling and Occlusion

A.1 Introduction

A visual representation is a function of past images that is useful to answer questions about the

scene given future images from it, regardless of nuisance variability that will affect them. [150]

define an optimal representation as a minimal sufficient statistic (of past data for the scene) and

a maximal invariant (of future data to nuisance factors), and propose a measure of how “useful”

(informative) a representation is, via the uncertainty of the prediction density. What is a nuisance

depends on the task, that includes decision and control actions about the surrounding environment,

or scene, and its geometry (shape, pose), photometry (reflectance), dynamics (motion) and se-

mantics (identities, relations of “objects” within). Depending on the task, nuisance variables may

include viewpoint, illumination, sensor calibration, and occlusion of line of sight. In this paper we

focus on the latter and its impact in the design and learning of representations.

A.1.1 Related Work and Contributions

This paper builds on [150] by focusing on occlusion and scaling phenomena. There, a representa-

tion is seen as an approximation of the likelihood function, with nuisance factors either marginal-

ized or profiled (max-out). Most work in low-level vision handles occlusions by restricting the

attention to local regions of the image, resulting in representations known as local descriptors –

too many to review here, with SIFT a prototypical representative [107]. Scale changes are handled

by performing computation in scale-space [104]. Empirical comparisons abound (e.g., [119]) and

recently expanded to include convolutional networks [54]. Our work is aimed at understanding

how to relate various descriptors to each other, so the assumptions on which they rely become
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patent, and to an “ideal” representation, so one can see how to improve them, not just compare

them on any given dataset.

We show that optimal management of nuisance variability due to occlusion is generally in-

tractable, but can be approximated leading to a composite (correspondence) hypothesis test, which

provides grounding for the use of “patches” or “receptive fields,” ubiquitous in practice (Sect.

A.3.2.1). The analysis reveals that the size of the domain of the filters should be decoupled from

spectral characteristics of the image, unlike traditionally taught in scale-space theory, an unintu-

itive consequence of the analysis. This idea has been exploited by [43] to approximate the optimal

descriptor of a single image, under an explicit model of image formation (the Lambert-Ambient,

or LA, model) and nuisance variability, leading to DSP-SIFT. Extensions to multiple training im-

ages, leading to MV-HoG and R-HoG, has been championed by [41]. Here, we apply domain-size

pooling to a convolutional neural network, leading to DSP-CNN, and to deformable part models

[52], leading to DSP-DPM, in Sect. A.3.4 and A.3.5 respectively.

A.2 Background

We treat images as random vectors x, y and the scene θ as an (infinite-dimensional) parameter. An

optimal representation is a function ϕ of past images xt .
= {x1, . . . , xt} that maximally reduces

uncertainty on questions about the scene [58] given images from it and regardless of nuisance

variables g ∈ G. In [150] the sampled orbit anti-aliased (SOA) likelihood is introduced as:

L̂G,ϵ(θ;x) = max
i

L̂(θ, gi; x), i = 1, . . . , N(ϵ) (A.1)

where

L̂(θ, gi;x)
.
=

∫
G

L(θ, gig;x)dP (g) (A.2)

and L(θ, g; x)
.
= pθ,g(x) is the joint likelihood, understood as a function of the parameter θ and

nuisance g for fixed data x, with dP (g) = w(g−1)dµ(g) an anti-aliasing measure with positive

weights w. There, it is also shown that the SOA likelihood is an optimal representation in the

sense that, for any ϵ, it is possible to choose N and a finite number of samples {gi}Ni=1 so that

ϕθ(x
t)

.
= L̂G,ϵ(θ; x

t) approximates to within ϵ a minimal sufficient statistic (of xt for θ) that is
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maximally invariant to group transformations in G, i.e., an optimal representation. This result is

valid under the assumptions of the Lambert-Ambient (LA) model [42], which is the simplest known

to capture the phenomenology of image formation including scaling, occlusion, and rudimentary

illumination. For us, what matters of the LA model are three facts: First, the scene separates the

past from the future: xt ⊥ y | θ, meaning that pθ(xt, y) = pθ(x
t)pθ(y). Second, conditioning

on viewpoint factorizes the likelihood: If g ∈ G = SE(3) is the position and orientation of the

camera in the reference frame of the scene θ and the image y is made of pixels yi, then

pθ(y|g) =
∏
i

pθ(yi|g) (A.3)

Third, the action of restricted groups G ⊂ SE(3), for instance planar translations, rotations, scal-

ings, affine and projective transformations, contrast transformations, etc. is approximately equiv-

ariant, in the sense that for a sufficiently small domain,

pθ(g1y|ḡ2) = pθ(y|ḡ1ḡ2) (A.4)

where the product g1g2 denotes group composition and the bar (omitted henceforth) denotes the

embedding of the group action on the (2-D) plane into (3-D) Euclidean space. In Sect. A.3.2 we

will motivate these assumptions by restricting the representation to local spatial domains, and use

it in Sect. A.3.3 to achieve invariance to arbitrary vantage points. When the task corresponds to a

partition of the space of scenes θ, for instance those providing the same answer to a finite collection

of questions based on (future) data y and represented by a (supervised, past) training set xt, then

ϕθ,G(y, x
t)

.
= ϕθ,G(y)ϕθ(x

t) ≃ p̂
Xt,G

(y)p̂
Xt (x

t) ∝ p̂
xt,G

(y) can be considered a “learned approxi-

mation” of an optimal representation. Next, we illustrate how to compute such an approximation

explicitly under the assumptions of the LA model.

Remark 1 (Active Sensing). A representation, informative as it may be, can be no more informa-

tive than the data itself, uninformative as it may be. This is irrelevant in our context, for we are

seeking statistics that are as informative as the (training) data (sufficient), however good or bad

that is. For the representation to (asymptotically) approach the informative content of the scene, it

is necessary to design the experiment so that the data collected xt, with t → ∞, yields statistics

that are asymptotically complete [50]. Such active learning or active sensing is beyond the scope

of this paper.
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When a single training datum is given, xt = x, no intrinsic (intra-class) variability can be

learned, and the variability in the data is ascribed to the nuisances. The representation for t = 1

thus reduces to

ϕx,G(y) = pG(y|x) (A.5)

which is approximated locally by DSP-SIFT [43].

A.3 Learning Visual Representations

In [150], it is shown that the orbit likelihood of the LA model is maximally invariant and minimally

sufficient. Thus, visual representations can be trained or designed to compute the SOA likelihood

with respect to nuisances that include illumination, viewpoint (with the associated scale changes),

and partial occlusions.

A.3.1 Contrast invariance

Contrast transformations are monotonic continuous transformation of the (range space of the) data.

If applied globally to an image, they are a crude approximation of changes in the image due to il-

lumination. However, applied locally and independently in each receptive field, they can capture

complex illumination effects. As we will see, occlusion will force our representation to be re-

stricted to local statistics, so we adopt local contrast transformation as a model of illumination

changes. It is well-known that the curvature of the level sets is a maximal invariant [4]. Since

the gradient orientation is everywhere orthogonal to the level sets, it is also a maximal contrast

invariant. The following expression for the invariant is obtained via marginalization of the norm of

the gradient for a single training image, since the action of contrast is independent at each pixel.

Theorem 1 (Contrast invariant1). Given a training image x and a test image y, assuming that the

latter is affected by noise that is independent in the gradient direction and magnitude, then the

maximal invariant of y to the group G of contrast transformations is given by

p
x,G

(y) = p(∠∇y|x) ∥∇x∥. (A.6)

1Proof of Theorem 1 is derived in [149].
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The independence assumption above is equivalent to assuming that the gradient magnitude and

orientation of y are related to the gradient magnitude and orientation of x by a simple additive

model: ∥∇y∥ = ∥∇x∥ + nρ and ∠∇y = ∠∇x ⊕ nα, where ⊕ denotes addition modulo 2π,

and nρ and nα are independent. These are all modeling assumptions, clearly not strictly satisfied

in practice, but reasonable first-order approximations. Note that, other than for the gradient, the

computations above can be performed point-wise, so we could write (A.6) at each pixel yi: if

α
.
= ∠∇yi,

ϕx(α) =
∏
i

NS1(αi − ∠∇xi; ϵα)∥∇xi∥ (A.7)

In the rest of the paper, we use the symbol α to denote the orientation of the image gradient relative

to one of the coordinate axes, and omit the subscript G when referring to contrast (since the use

of the argument α makes it unambiguous). The width of the kernel ϵα is a design (regularization)

parameter.

Remark 2 (No invariance for x). Note that (A.7) is invariant to contrast transformations of y, but

not of x. For a single training image, the latter can be handled by normalization as we will see

next. For multiple images, the factor can in principle be different for each training image.

Remark 3 (Bayesian invariant). In the proof of Theorem 1, the gradient magnitude is marginalized

with respect to the base measure. With a different prior, for instance arising from bounds on the

gradient or from statistics of natural images, marginalization yields a factor other than ∥∇x∥.

Clamping, described next, can be understood as a particular choice of prior for marginalization

of the gradient magnitude.

Invariance to contrast transformations in the (single) training image can be performed by nor-

malizing the likelihood, which in turn can be done in a number of ways. If contrast transformations

are globally affine, then the joint likelihood can be normalized by simply dividing by the integral

over α, which is the ℓ1 norm of the histogram across the entire image/patch

ϕx(α)

∥ϕx(α)∥ℓ1
=

p(α|x)∥∇x∥∫
p(α|x)dα∥∇x∥

= p(α|x) (A.8)
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that should be used instead of the customary ℓ2 [107]. If the contrast transformation is non-linear,

it cannot be eliminated by global normalization.

Remark 4 (Clamping). When the joint distribution is approximated by the product of marginals, as

in [107], joint normalization is still favored in practice as it introduces some correlations among

marginal histograms [35]. However, cells with large gradients tend to dominate the histogram,

pushing all other peaks lower. Alternatively, one could independently normalize each of the his-

tograms, ϕxi
(α) and then concatenate them. But this has the opposite effect: Cells with faint

peaks, once re-normalized, are given undue importance and relative intensity difference between

different cells are discarded. A common trick consisting of joint normalization (so faint cells do

not prevail) followed by “clamping” (saturation of the maximum to a fraction of the value of the

highest peak, so large gradients do not dominate), and then re-normalization, seems to achieve a

tradeoff between the two [107]. This process can also be understood as a way of marginalizing ρ,

with respect to a different measure dP (ρ), as described in Rem. 3 while assuming that, within each

region, contrast transformations are affine.

Once invariance to contrast transformations is achieved, which can be done on a single image

x, we are left with nuisances G that include general viewpoint changes, including the occlusions

they induce. This can be handled by computing the SOA likelihood with respect to the product G

of SE(3) (the group of general rigid motions, Sect. A.3.3) from a training sample xt, leading to

L̂(θ, gi;x
t) =

{∫
G

ϕxt(α|gi ◦ g)dP (g)
}N

i=1
(A.9)

In the next section we show how to handle occlusions, and in the following one general viewpoint

changes.

A.3.2 Occlusions

We do not know ahead of time what portion of an object or scene, seen in training images, will

be visible in a test image. Occlusion, or visibility, is arguably the single most critical aspect of

visual representations. It enforces locality, as dealing with occlusion nuisances entails searching

through, or marginalizing, all possible (multiply-connected) subsets of the test image. This power

set is clearly intractable even for very small images.
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A.3.2.1 Bypassing shape and justifying “patches” or “receptive fields”

We illustrate a principle to bypass combinatorial explosion for a single training image, absent all

other nuisances. A training x and a test image y correspond (hypothesis H0) if there exist subsets

of x, Ωx, and of y, Ωy, such that the restrictions come from the same scene, i.e., in this setting they

differ by a white (zero-mean, uninformative) residual.2 Under this simplistic model, the subsets

Ωx = Ωy
.
= Ω are the same, and y = x + n where n is either a white (spatially i.i.d) zero-

mean process with a small covariance, n|Ω ∼ N (0, ϵ2) in the corresponding region, or something

else, for instance uniform with a mean in the order of magnitude of the intensity range, assumed

normalized to one, n|Ωc ∼ U . Hypothesis H1 is that there exists no such region, and n ∼ U on the

entire domain. Since we do not know the region Ω, this is a composite hypothesis testing problem,

where the likelihood ratio is given by

p(y|x,H0)

p(y|x,H1)
=

maxΩ p(y|Ω |x|Ω , H0)p(y|Ωc |x|Ωc , H0)

maxΩ p(y|Ω |x|Ω , H1)p(y|Ωc |x|Ωc , H1)
=

maxΩN (y|Ω − x|Ω ; ϵ
2)

maxΩ U(y|Ω − x|Ω)
(A.10)

Missed detections (treating a co-visible pixel as occluded) and false alarms (treating an oc-

cluded pixel as visible) have different costs: Omitting a co-visible pixel from Ω decreases the

likelihood by a factor corresponding to multiplication by a Gaussian for samples drawn from the

same distribution; vice-versa, including a pixel from Ωc (false alarm) decreases the log-likelihood

by a factor equal to multiplying by a Gaussian evaluated at points drawn from another distribution,

such as uniform. So, testing for correspondence on subsets of the co-visible regions, assuming the

region is sufficiently large, reduces the power, but not the validity, of the test. This observation

can be used to fix the shape of the regions, leaving only their size to be marginalized, or searched

over.3 This reasoning justifies the use of “patches” or “receptive fields” to seed image matching,

but emphasizes that a search over different sizes [43] is needed.

Together with the SOA likelihood, this also justifies the local marginalization of domain sizes,

along with translation, as recently championed in [43].

2Of course, absent all other nuisances, all pixels are independent so corresponding regions can be determined by
“background subtraction” techniques. This requires absence of other nuisances, so the example serves just to illustrate
the principle.

3Alternatively, the sampling can be framed as a sequential hypothesis test for joint matching and domain size
estimation, as in region-growing or quickest setpoint change detection.

110



Corollary 1 (DSP-SIFT). The DSP-SIFT descriptor [43] approximates an optimal representation

(A.9) for G the group of planar similarities and local contrast transformations, when the scene is

a single training image, and the test image is restricted to an unknown subset of its domain.

SIFT as designed violates the sampling principles described here, as sampling occurs with re-

spect to the full similarity group (positions, scales and rotations are selected using a co-variant

detector), but anti-aliasing is only performed in position (spatial pooling) and orientation (his-

togram smoothing), not in scale, which in SIFT is tied to domain size.

A.3.3 General viewpoint changes

If a co-variant translation-scale and size sampling/anti-aliasing mechanism is employed, then

around each sample the only residual variability to viewpoint SE(3) = R3 × SO(3) is reduced4

to SO(3). That can be further factored into a rotation of the image plane (“in-plane” rotation), and

its complement (“out-of-plane” rotation). We next show how in-plane rotations can be eliminated,

leaving only out-of-plane rotations.

Canonization is the process by which a co-variant detector (a functional of the data and a chosen

group whose zero-level set identifies isolated elements of the group that co-vary with it) is used

to determine (multiple) local reference frames with respect to which the data is, by construction,

invariant to the chosen group [147]. This procedure is particularly well suited to deal with planar

rotation, since the statistics of natural images ensure that with high probability orientation-co-

variant detectors have few isolated extrema. An example is the local maximum of the norm of the

gradient along the direction α = α̂l(x).5 Invariance to G = SO(2) can be achieved by retaining

the samples

pθ(α|G) = {pθ(α|α̂l)}Ll=1 (A.11)

4In reality, translation in space is not equivalent to translation and scaling of the image plane, for the former induces
deformations of the image domain due to parallax effects and occlusions, which are absent in the latter. However,
locally and away from occlusions, one is a first-order approximation of the other, so the derivation is valid for each
local region that does not straddle an occluding boundary, justified by our handling of occlusions via the restriction to
receptive fields in Sect. A.3.2.

5Here g acts on x via gx(ui, vi) = x(u′′
i , v

′′
i ) where u′′ = u cosα − v sinα and v′′ = u sinα + v cosα, and a

canonical element ĝl(x) = α̂ can be obtained as α̂ = argmaxα ∥∇x(u′
i, v

′
i)∥. The corresponding rotation invariant

ĝ−1(x)x is ∠∇x(u′
i, v

′
i) where u′ = u cosα+ v sinα and v′ = −u sinα+ v cosα

.
= α′.
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Rotation anti-aliasing is performed by regularizing the orientation histogram. Note that, as it was

for contrast, planar rotations can affect both the training x and the test image y. In some cases,

a consistent reference (canonical element) is available for both when scenes or objects are geo-

referenced: The projection of the gravity vector onto the image plane [81, 40]. In this case, L = 1,

and α̂ is the angle of the projection of gravity onto the image plane (well defined unless they are

orthogonal):

pθ(α|G) = pθ(α|α̂). (A.12)

In reality, rotation canonization should contend with spatial quantization, neglected here since

rotation errors are absorbed by the binning of gradient orientation ϵα.

This leaves out-of-plane rotations to be managed. Unfortunately, the effects of such rotations

on future images depend on the shape of the underlying scene, which is unknown, and that cannot

be determined from a single image. Therefore, the only way in which true viewpoint changes can

be factored out of the representation is if multiple training images of the same scene are available.

[41] have proposed extensions of local descriptors based on a sampling approximation of the like-

lihood function, p̂θ, or on a point estimate of the scene pθ̂, multi-view HOG and reconstructive

HOG respectively. The estimated scene has a geometric component (shape) Ŝ and a photometric

component (radiance) ρ̂, inferred from the LA model as described in [42]. These in turn enable the

approximation of the predictive likelihood pθ̂,G, and hence the representation:

ϕθ̂,G(αi) =

∫
SO(3)

NS1(αi − ρ̂ ◦ g ◦ π−1

Ŝ
(uj, vj); ϵα)∥∇ρ̂∥Nσ(i− j)dµ(j)dPSO(3)(g) (A.13)

where θ̂ = (Ŝ, ρ̂), ∠∇y = α and π−1 is the pre-image of a perspective projection (the point of

first intersection of the ray through the pixel (uj, vj) with the surface Ŝ). Alternatively, a sampling

approximation of the likelihood function p̂θ(x
t) yields “multi-view HOG”

ϕG(αi|xt)
.
=

1

t

∑
τ

∫
R2

NS1(αi − ∠∇xτ j; ϵα)Nσ(i− j)dµ(j)dP (σ) (A.14)

Note that the gradient weight ∥∇xτ∥ is absent, since individual samples of past data do not enable

separating nuisance from intrinsic variability, and each sample image xτ has different contrast, so

the factor cannot be simply eliminated by normalization as done in Rem. 3 for a single image.

Therefore, in MV-HOG it is necessary to assume that training images are captured under the same
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illumination conditions. In MV-HOG, regularization is implicit in the kernel, and the predictive

likelihood is based on simple planar transformations. In R-HOG, the estimated scene (which re-

quires regularization to be inferred) acts as the regularizer [41]. Once the effects of occlusions

are considered (which force the representation to be local), and the effects of general viewpoint

changes are accounted for (which creates the necessity for multiple training images of the same

scene), a maximal contrast/viewpoint/occlusion invariant can be approximated via the SOA likeli-

hood. Using (A.13), the SOA likelihood (A.9) becomes:

L̂SE(3),ϵ(N)(αi) = max
k

{∫
SO(3)

NS1(αi − ρ̂ ◦ gkg ◦ π−1

Ŝ
(xj); ϵα)κσ(i− j)dµ(j)dP (σ)dPSO(3)(g))

}N

k=1

(A.15)

The assumption that all existing multiple-view extensions of SIFT do not overcome is the con-

ditional independence of the intensity of different pixels (A.3). This is discussed in [150] for the

case of deep convolutional architectures.

A.3.4 Domain-Size Pooling in Convolutional Neural Networks (DSP-CNN)

Deep convolutional architectures can be understood as implementing successive approximations of

an optimal representation by stacking layers of (conditionally) independent local representations

of the form (A.15), which have been shown by [150] to increasingly achieve invariance to large

deformations, despite locally marginalizing only affine (or similarity) transformations. As [43]

did for SIFT, we conjectured that pooling over domain size would improve the performance of a

convolutional network.

After a brief review of a classic convolutional neural network [98], we next formally present

the proposed method. We show experiments to test the conjecture using a pre-trained network

which is fine-tuned with domain-size pooling on benchmark datasets. For computational reasons,

we limited the domain-size pooling to 6 sizes (including the base size), and only to the first con-

volutional layer. Still, the experiments show marginal improvement. We conjecture that more

thorough incorporation of domain-size pooling would yield further performance benefits.
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A.3.4.1 Convolutional neural networks

Let I : D ⊂ R2 → R+;x 7→ I(x) be the input grayscale image. Let l be the layer index and define

P i
l : Dl → R;x 7→ P i

l (x) (A.16)

P i
l (·) is the i-th (max- or mean-) pooled feature map at layer l and P i

l (x) is its value at location x.

Let Pl : Dl × Z+ → R be all feature maps for layer l and P0(x) = I(x), i.e., 0-layer is the input

image itself. Also define

Ci
l : D

′
l → R;x 7→ Ci

l (x) (A.17)

Ci
l (·) denotes the i-th (un-pooled) feature map at layer l and Dl ⊆ D′

l.

Given the above notation, the convolutional neural network (CNN) can be recursively defined as

C i
l+1(m,n) = f [

∑
∀(µ,v)∈Fl+1
∀z∈Zl+1

Ki
l+1(µ, v, z)Pl(m− µ, n− v, J i

l+1(z)) +Bi
l+1],

(m,n) ∈ D′
l+1 CONV (A.18)

P i
l+1(x̂) = pool

∀x∈B2×2(x̂)

Ci
l+1(x), x ∈ D′

l+1 and x̂ ∈ Dl+1 SPATIAL POOLING (A.19)

where Ki
l+1 : Fl+1×Zl+1 → R is the kernel for feature map i at layer l+1 (Fl+1 ⊂ R2 is the kernel

support at layer l + 1 and Zl+1 ⊂ Z+ is the number of channels which that kernel spans). There-

fore, the convolution is applied on 2 dimensions, but the convolution kernel is three-dimensional,

as the feature map i at layer l+1 is computed from several pooled feature maps from the previous

layer l (where J i
l+1(·) is the set of their indices.) Bi

l+1 ∈ R is the bias term for the i kernel (feature)

of l + 1 layer. f can be tanh(·) function or the ReLU operator max{·, 0}. In Eqn. (A.18), f is

applied component-wise.

Typically, the first several layers of a CNN are computed by a series of convolution and pooling

operations. Because of the stride in sampling feature map and the pooling operation, Cl or Pl will

be eventually reduced to a 1 × 1 × N matrix where N is the number of feature maps in this last

layer. Upon now an image I is “encoded” into a vector which will be the input to a standard fully-

connected multilayer neural network to produce the final vector representation for classification.
114



A.3.4.2 Domain-size pooling

Let’s modify the standard model and introduce pooling over S domain sizes for each convolutional

operation. At each convolutional layer l, we apply each kernel i over S different scales6, and

therefore we get S response maps per feature, before pooling over scale. We define

Ci
l,s : D

′
l,s → R; x 7→ Ci

l,s(x), s ∈ {1, . . . , S} (A.20)

where C i
l,s(·) is the i-th feature map at layer l and scale s. All convolutional maps over scale

have the same size, given that convolutions are computed around the same locations over different

scales, modulo size variation on the boundaries because of different kernel sizes. These artifacts

can be resolved by cropping or padding all maps to D′
l with the minimum (average) activation,

which does not affect the max- (average-) pooling operations that follow. Thus, all feature maps

Ĉi
l,s : D

′
l → R have the same support region D′

l and next they are pooled over S scales.

The network’s main components can be reformulated as:

Ci
l+1,s(m,n) = f [

∑
∀(µ,v)∈Fl+1,s

∀z∈Zl+1

Ki
l+1,s(µ, v, z)Pl(m− µ, n− v, J i

l+1(z)) + Bi
l+1],

(m,n) ∈ D′
l+1, s ∈ {1, . . . , S} CONV (A.21)

P i
l+1(x̂) = pool

∀x∈B2×2(x̂)

pool
∀s∈S

Ĉi
l+1,s(x), x ∈ D′

l+1, x̂ ∈ Dl+1 DS & SPATIAL POOLING (A.22)

where Ki
l+1,s : Fl+1,s×Zl+1 → R and Bi

l+1 ∈ R are kernel and bias terms correspondingly for the

i feature at l+1 layer and s scale. Fl+1,s, s ∈ {1, . . . , S} are S kernel sizes which can be obtained

via bilinear interpolation with uniformly sampled ratio in the neighborhood of the normalized unit

scale (e.g., for 5 scales, ratios {0.6, 0.8, 1, 1.2, 1.4} are chosen). The pool operator can be max or

mean for both spatial and domain-size pooling.

6The computations take place at the same locations where single-scale convolutions are computed, given the layer’s
size, stride and padding parameters. This process can be implemented either with domain or kernel warping, and
generates a structure that resembles with a truncated cone.
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Another way to write these components is to extend the convolutional operator to directly pool

over different domain sizes, as follows:

C i
l+1(m,n) =f [

∑
∀(µ,v)∈Fl+1,s

∀z∈Zl+1
∀s∈S

Ki
l+1,s(µ, v, z)Pl(m− µ, n− v, J i

l+1(z)) +Bi
l+1],

(m,n) ∈ D′
l+1 CONV WITH DS POOLING (A.23)

P i
l+1(x̂) = pool

∀x∈B2×2(x̂)

Ci
l+1(x), x ∈ D′

l+1, x̂ ∈ Dl+1 SPATIAL POOLING (A.24)

where each symbol has been defined above.

A.3.4.3 Implementation and experiments

To the best of our knowledge, HMAX [139] and Locally Scale-invariant CNNs [83] are the only

network that pools across different scales, but yet no approach that we know of pools across dif-

ferent domain sizes. The representation is built in successive stages, where at each stage n the

representation θn is represented by a distribution of images x, from which one can sample.

To compare a domain-size pooled CNN (DSP-CNN) to an ordinary CNN, we use a discrimi-

natively pretrained model on Imagenet (ILSVRC-2012 [136]), which we fine-tune on Pascal 2007

train-validation data [48] and test on the VOC test set. Considering that Pascal VOC is a multi-label

dataset, the softmax regression loss can be replaced with either one-vs-rest classification hinge loss

or a ranking hinge loss. To keep things simple (with an expected small performance loss) we keep

softmax and augment the training set so that images with multiple labels are entered in the pipeline

at each epoch as many times as labels they have.

The pretrained on ILSVRC-2012 model which is described as CNN-S in [26] is used in our

experiments. Then similar fine-tuning protocol with the one suggested by the authors is followed

for both the ordinary and the DSP model. In order to control overfitting, we use the following

learning rate schedule: 10−3 / 10−4 (epochs 1 − 15), 10−4 / 10−4 (epochs 16 − 35), 10−5 / 10−5

(epochs 36 − 50) (first/second number pertain to last/hidden layers correspondingly). Average-

pooling over domain-size is deployed for conv1 layer (6 sizes; ratios 0.55, 0.7, 0.85, 1, 1.25, 1.5).

No data augmentation is applied for either training or testing, which explains the lower reported
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mAP statistics compared to the numbers that are reported in [26]. Our interest is only to evaluate

the relative merit of DSP, so the absolute numbers are not as relevant.

All trainings were performed using the MatConvNet toolbox [165]. Representative results are

shown in Fig. A.1 and Table A.1. The improvement is marginal but nevertheless present. We

conjecture that more thorough experimentation with domain-size pooling in convolutional archi-

tectures may reveal more improvements in performance.
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Figure A.1: Precision-recall curves over 20 classes in the Pascal 2007 Classification Challenge. DSP-CNN

is plotted in blue, while the original CNN in red.

A.3.5 Domain-Size Pooling in Deformable Part Models (DSP-DPM)

We have also developed domain-size pooling extensions of deformable part models (DPMs) [52],

small trees of local HOG descriptors (“parts”), whereby local photometry is encoded in the latter

(nodes), and geometry is encoded in their position on the image relative to the root node (edges).
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Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

CNN .8813 .8331 .8566 .8205 .4223 .6965 .8456 .8320 .5779 .6826

DSP-CNN .8840 .8309 .8570 .8228 .4186 .7169 .8504 .8513 .6014 .6857

Table Dog Horse Motorbike Person Plant Sheep Sofa Train TV Monitor mAP

CNN .6693 .8100 .8259 .8053 .8779 .5351 .7549 .5765 .8722 .6786 .7427

DSP-CNN .7014 .8253 .8261 .8109 .8903 .5619 .7703 .6388 .8887 .7171 .7575

Table A.1: PASCAL VOC 2007 Classification Challenge.

Intra-class shape variability is captured by the posterior density of edge values, learned from sam-

ples. Photometry is captured by a “HOG pyramid” where the size of each part is pre-determined

and fixed relative to the root. Interpreting the photometric descriptor as a likelihood function,

rather than a “feature vector,” helps interpreting DPM as a (factorized) posterior density, where

photometry is encoded by the SOA likelihood. One could therefore conjecture that performing

anti-aliasing with respect to the size of the parts would improve performance.

A.3.5.1 Implementation and experiments

Deformable part model (DPM) consists of a fixed set of HOG templates (one root and several parts)

and the set of learnable deformation costs for all the parts. Domain-size pooling can be applied

to the low level HOG descriptors, yielding DSP-DPM. We sampled 10 domain sizes ranging from

0.5σ to 1.5σ where σ is the original size used for HOG computation. By average pooling of the

HOGs computed from each domain sizes, we obtain a dense DSP-HOG response for the whole

image. These DSP-HOGs are used to train the deformable model for each object in the PASCAL

VOC 2007 detection challenge7 [48]. The results are reported in Table A.2. DSP-DPM outper-

forms the vanilla DPM in most object categories in terms of mean average precision. Among these

categories, we found they are mostly classes of animals whose configurations are more versatile

and thus more likely to hit occlusions. In other cases when objects are less “deformable”, the

performances between two DPMs are close. Moreover, at test time, the original DPM samples

scale very densely (10 intermediate levels between two octaves), which is observed to be critical

7Note that we evaluate the performance of DSP-CNN on PASCAL VOC 2007 Classification task, but DSP-DPM
on the Detection task.
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Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

DPM .3221 .5814 .0835 .1212 .2931 .5241 .5733 .2221 .2101 .2447

DSP-DPM .3526 .5951 .1070 .1377 .3022 .5246 .5679 .2668 .2281 .3042

Table Dog Horse Motorbike Person Plant Sheep Sofa Train TV Monitor mAP

DPM .2803 .1215 .6078 .4604 .4020 .1246 .1745 .3248 .4243 .4470 .3271

DSP-DPM .2760 .1329 .6149 .4634 .4127 .1345 .2005 .3193 .4538 .4318 .3413

Table A.2: PASCAL VOC 2007 Detection Challenge.

to achieve a good performance [52]. In that case, the effect of DS-pooling becomes less obvious.

A.4 Conclusions

We have derived an expression (A.15) for minimal sufficient statistics of past data when the test

image is restricted to a neighborhood of y where αi is computed, corresponding to sampled loca-

tions around (uk, vk), with scales σ pooled according to the prior dP (σ) around the samples σk.

If a sufficiently exciting training set is available, spanning variability due to out-of-plane rotations,

marginalization of SO(3) can be replaced by temporal averaging of the training images (A.14).

The joint distribution of local descriptors can be captured by a stacked architectures, as shown in

[150] and illustrated here for deformable parts models and deep convolutional architectures.
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