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Abstract

We test the hypothesis that a representation-learning architecture can train away the nuisance variability present in images,
owing to noise and changes of viewpoint and illumination. First, we establish the simplest possible classification task, a
binary classification with no intrinsic variability, which amounts to the determination of co-visibility from different images
of the same underlying scene. This is the Occlusion Detection problem and the data are typically two sequential, but not
necessarily consecutive or in order, video frames. Our network, based on the Gated Restricted Boltzmann machine (Gated
RBM), learns away the nuisance variability appearing on the background scene and the occluder, which are irrelevant with
occlusions, and in turn is capable of discriminating between co-visible and occluded areas by thresholding a one-dimensional
semi-metric. Our method, combined with Superpixels, outperforms algorithms using features specifically engineered for
occlusion detection, such as optical flow, appearance, texture and boundaries. We further challenge our framework with
another Computer Vision problem, Image Segmentation from a single frame. We cast it as binary classification too, but
here we also have to deal with the intrinsic variability of the scene objects. We perform boundary detection according to a
similarity map for all pairs of patches and finally provide a semantic image segmentation by leveraging Normalized Cuts.

1. Introduction
Representation-learning architectures have shown the ability to learn class-specific variability despite significant nuisance

variability [9, 17, 19, 27, 37, 38]. The problem of nuisance variability is particularly acute in Computer Vision, where even
the same object or scene can yield a large variety of images depending on vantage point, illumination and partial occlusion,
which can be nuisance factors for certain tasks [33]. This point has been recently emphasized by Poggio [26], who set
forth the hypothesis that much of the ventral stream is tasked with managing the infinite amount of nuisance variability, and
by Sundaramoorthi et al. [35], who showed that the intrinsic variability of objects in images is infinitesimal compared to
nuisance variability. These theses would seem to challenge the possibility that nuisance variability in images can be learned
away by even powerful learning architectures. In this manuscript, we put this challenge to the test by establishing two visual
classification tasks, and deploying a fairly simple representation-learning architecture to tackle them.

The first task we selected is the determination of co-visibility. This is a binary decision where, given two video frames,
we wish to determine for each pixel whether or not back-projects onto the same point in physical space. This completely
eliminates intrinsic variability, because the underlying scene is known to be the same and the diversity between images of
the same scene is entirely attributable to nuisance factors such as different vantage points and illumination. We then deploy a
scheme based on factorized Gated Restricted Boltzmann machine [23] and Superpixels [24] of different scales to learn away
such nuisance variability, given training samples consisting of multiple pairs of images related by different transformations.
Violation of co-visibility occurs in regions of an image that are not recognized as sufficiently similar according to the model.

The second problem we deal with is segmentation in a single image, which is also cast as binary classification. Class
variability makes nuisance elimination more challenging, but we show that the Gated RBM in combination with Normalized
Cuts [32] yield a semantic final segmentation. We present our framework in Sec. 2, Sec. 3 has the experiments and Sec. 4
consists of our conclusions. The upshot is that, even though in theory nuisances account for almost all the variability in the
data [35], in practice the finite cardinality of data space acts as a regularizer, and since the classification occurs in data space,
nuisance variability can be learned away.
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3 1.1. Related work

The determination of co-visibility is related to the general problem of correspondence, that underlies a significant portion
of Computer Vision research [31]. When correspondence is trivial, for instance when multiple images of the same scene are
taken from a stationary camera at different time instants, this problem is known as background subtraction [25] and violations
of co-visibility are due to the presence of moving foreground objects. In the more general setting, the determination of co-
visibility is entangled with correspondence, so this problem relates to optical flow, another broad concern in the Computer
Vision literature [1, 3, 4, 11, 15, 29, 34, 36]). Occlusion detection is often formulated as classification problem, where motion
estimation is performed in a discrete setting ([18, 20]), which is a well-known difficult problem. Occlusion detection is closely
related with occlusion boundary detection, where estimations are performed in video sequences [2, 11, 15, 21, 29, 34, 36]
or single images [13, 30]. Martin et al. [22] fuse multiple cues from local image measurements to precisely infer the object
boundaries in natural scenes. We compare with the occlusion learning work of Humayun et al. [14], who use various
hand-crafted visual features, a subset of which is selected for each testing pair within a Random Forest-based framework.

1.2. Contributions

The flexibility of our method lies in the fact that by selecting an appropriate training set, the network becomes insensitive
to nuisance variability due to certain predetermined factors (e.g., viewpoint and illumination changes), so the residual is
informative for other factors, such as co-visibility in our occlusion detection setting or interclass variability for segmentation.
We use a large training set, which has been generated by applying various transformations on random binary images. In our
occlusion detection method there is no constraint regarding the order of the frames or the baseline range, as it is just a powerful
image comparison mechanism which proves to be robust with local deformations and non-rigid motions. Additionally, there is
no assumption for the orientation of the occlusion boundaries or the shape of the occluded regions. However, discriminating
between occlusions and disocclusions has a small post-processing overhead. It is noticeable that our occlusion detection
algorithm, when considering the superpixel maps as well, often outperforms state-of-the-art algorithms based on optical flow
and miscellaneous visual features. Moreover, although the training needs hours depending on the size of the training set (∼ 5
hours for 30, 000 image pairs with size 13 × 13 on a standard laptop), it is performed once and offline, and then the testing
(e.g., 640 × 480 images) takes only a few seconds. Finally, we propose applying our network on image segmentation and
demonstrate how invariance and patchwise comparisons contribute to a semantically meaningful segmentation.

2. Framework for Nuisance-Invariant Image Comparison
Boltzmann machines are probabilistic bidirectionally connected networks that capture important information of an un-

known distribution based on samples from this distribution. However, their learning is computationally consuming. Re-
stricted Boltzmann machines impose the probabilistic restriction of statistical independence between variables of same layer
given the state of variables of all other layers and simplifies the learning process. The 2-layer architecture can be modeled as
bipartite undirected graph.

2.1. Gated Restricted Boltzmann machine

A Gated Restricted Boltzmann machine is a parameterized generative model representing a probability distribution. Given
some observations (i.e., the training data), learning means adjusting the parameters so that the represented distribution fits
the training data as well as possible. The Gated RBM consists of 3 layers of binary variables: two layers of visible units that
correspond to the observations and one hidden layer, which encodes dependences between two observable layers. Therefore,
this model can capture the relationship (modulo a set of factors that it is trained to be invariant to) and in turn “similarity”
between two images.

A Gated RBM consists of K hidden units H = (H1, . . . ,HK) that capture the dependencies between two layers of
observed variables with units X = (X1, . . . , XI) and Y = (Y1, . . . , YJ). Adopting binary random variables, (X, Y, H)
takes values (x, y, h) ∈ {0, 1}I+J+K . Given that the image transformations do not include arbitrary motions of individual
pixels, this gives us the intuition to model the three-way interactions among the layers as the product of all possible two-way
interactions with F factors [23]. Thus, the joint probability distribution is p(x,y,h) = 1

Z e
−E(x,y,h;θ) with energy function

E(x,y,h; θ) = −
F∑
f=1

(

I∑
i=1

uifxi)(

J∑
j=1

vjfyj)(

K∑
k=1

wkfhk)−
I∑
i=1

aixi −
J∑
j=1

bjyj −
K∑
k=1

ckhk, (1)

where θ = {U,V,W,a,b, c} are the model parameters and Z(θ) =
∑

x,y,h e
−E(x,y,h;θ) is the partition function. Instead
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Figure 1: Graphical representation of a Gated Restricted Boltzmann machine (Gated RBM).

of I×J×K interaction tensor, three matrices with sizes I×F , J×F andK×F are factorized in a common product. Hence,
the order of parameter complexity decreases from cubic to square. For all i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}
and for all f ∈ {1, . . . , F}, uif , vjf and wkf are real-valued weights associated with the f factor and i, j or k unit,
correspondingly. Weight matrices U, V and W consist of “filters” {uf ,vf ,wf , f = 1 . . . F}. Additionally, ai, bj and
ck are real-valued bias terms associated with the ith and jth visible units and kth hidden unit, respectively. The model is
illustrated in Fig. 1.

Intuitively the first energy term represents a similarity score, as its high value coincides with co-occurrence of high
projection scores of images x, y and some subset of hidden variables h on F factors. The filters’ shape and the semantics
of similarity inferred by the model depend on the training set. For example, after training with pairs of images which are
related by affine transformations, the hidden variables capture “elementary” dependencies between the observed variables
like translational shifts, planar rotations and other small-dimensional (local) group transformations. In that case, two testing
images will be considered as “similar” by the model when they are almost identical or parts of them are related by affine
transformations of magnitude similar with these ones appearing on the training data.

The symmetric model is a special case where the weights of both visible layers are equal, that is {uif = vif , i =
1 . . . I, I = J}. It operates a complex transformation that is determined by the hidden layer and maps a set of repre-
sentations of one visible layer to the other. The representations are projections on a common space, which topologically
“compensates” the transformations that appear on the training set. More generally, the non-symmetric model is essentially
a mapping induced by the hidden layer between different, but related (according to the training set) representations of the
observable layers. In Fig. 2, we show the observed layers’ filters {uf ,vf , f = 1 . . . F, F = 100} when the model is trained
exclusively with shifted and scaled image pairs, respectively. The non-symmetric Gated RBM can be applied on image pairs
of different size (I 6= J), while the numbers of hidden variables K and factors F can be selected by the user. We mainly
experimented with values: I = J = 13× 13 = 169 and I = J = 26× 26 = 676, K = 50–200, F = 100–200.

Figure 2: Filters generated when training exclusively with shifted (left) and scaled (right) random binary images, respectively.
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3 2.2. Conditionals and Marginals

The complexity advantage of Restricted Boltzmann machines is that all variables of one layer are independent given the
state of all other layers’ variables. Thus, the joint conditional distribution is the product of all conditional distributions and
calculations can be done in parallel. After some mathematical manipulations1, the conditional distributions are:

p(x|y,h) =

I∏
i=1

B(xi;σ[

F∑
f=1

uif (

J∑
j=1

vjfyj)(

K∑
k=1

wkfhk) + ai]) (2a)

p(y|x,h) =

J∏
j=1

B(yj ;σ[

F∑
f=1

vjf (

I∑
i=1

uifxi)(

K∑
k=1

wkfhk) + bj ]) (2b)

p(h|x,y) =

K∏
k=1

B(hk;σ[

F∑
f=1

wkf (

I∑
i=1

uifxi)(

J∑
j=1

vjfyj) + ck]) (2c)

where B(x; p) is the pdf of a Bernoulli random variable x with parameter p and σ(x) = 1
1+e−x is the sigmoid activation

function. The distribution over an image pair (x, y) is taken by marginalizing the joint distribution over h:

p(x,y) =
∑

h∈{0,1}K
p(x,y,h). (3)

The number of possible h increases exponentially with the numberK of hidden variables, making the computation intractable
for reasonable values. However, approximating the unknown distribution with Gibbs sampling allows us to work only with
the conditionals. This fact, along with the conditional independence among variables in each layer of Gated RBM given the
other two layers, make computational cost reasonable. Additionally, a GPU-based implementation2 of the model speeds up
the training process by an order of magnitude.

2.3. Maximum Likelihood Learning

Given a set of i.i.d. training examples D = {(x(1),y(1)), . . . (x(N),y(N))}, the model parameters θ are learned via an
unsupervised learning framework. The log-likelihood given D observed training pairs is maximized:

max logL(θ|x,y) =
1

N

N∑
n=1

log p(x(n),y(n); θ). (4)

For a single training pair (x,y) the log-likelihood gradient w.r.t. a single model parameter θ is:

∂ logL(θ|x,y)

∂θ
=
∂ log( 1

Z

∑
h e
−E(x,y,h;θ))

∂θ
(5a)

=
∂(log

∑
h e
−E(x,y,h) − log

∑
x,y,h e

−E(x,y,h))

∂θ
(5b)

= −
∑
h

p(h|x,y)
∂E(x,y,h)

∂θ
+
∑
x,y,h

p(x,y,h)
∂E(x,y,h)

∂θ
. (5c)

By combining Eqs. 4 and 5c, the mean of this derivative over the training set can be expressed as:

1

N

N∑
n=1

∂ logL(θ|x,y)

∂θ
=

1

N

N∑
n=1

(
−Ep(h|x,y)

[
∂E(x,y,h)

∂θ

]
+ Ep(x,y,h)

[
∂E(x,y,h)

∂θ

])
(6a)

=

〈
∂E(x,y,h)

∂θ

〉
p(h|x,y)q(x,y)

−
〈
∂E(x,y,h)

∂θ

〉
p(x,y,h)

(6b)

∝
〈
∂E(x,y,h)

∂θ

〉
data

−
〈
∂E(x,y,h)

∂θ

〉
model

. (6c)

1Please see the Appendix for detailed mathematical derivations/proofs.
2Publicly available online from Roland Memisevic and Josh Susskind at http://learning.cs.toronto.edu/ rfm/code/gbmcuda.py. Additionally, the code

that generates the training set along with the Occlusion Detection and Image Segmentation code, which build on the model, will be uploaded on my website
after paper’s publication. The entire source code is written in Python.
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3 Algorithm 1 Training with 3-way Contrastive Divergence

Input: Gated RBM (X,Y,H), training batch D
Output: Weights (model parameters) update ∆θ

Initialize all weights ∆θ = 0
for all (x,y) ∈ D do

(x(0),y(0))← (x,y)
for t = 0, . . . , k − 1 do in random order
∀k = 1, . . . ,K sample h(t)k ∼ p(hk|x(t),y(t))

∀i = 1, . . . , I sample x(t+1)
i ∼ p(xi|h(t),y(t))

∀j = 1, . . . , J sample y(t+1)
j ∼ p(yj |h(t),x(t))

end for
for all weights do

∆θ = ∆θ −
∑

h p(h|v(0))∂E(v(0),h)
∂θ +

∑
h p(h|v(k))∂E(v(k),h)

∂θ
end for

end for

The second term in Eq. 6c is intractable, as it is computed over all configurations (x,y,h) (increases exponentially with I +
J +K number of units). However, Gibbs sampling of the unknown distribution gives a tractable approximation. Samples are
drawn alternatingly from the conditional distributions p(h|x,y), p(x|h,y) and p(y|h,x) in random order and the sampling
process is terminated in k steps (usually k = 1 works well [12]). Given the tri-partite structure of the model, the learning
process has been characterized as 3-way Contrastive Divergence [37]. The training process is summarized in Alg. 1.

2.4. Distance function

The model can be trained with pairs of images related by many transformations. This process makes it invariant over all
these transformations, so an appropriate similarity score given by the model can potentially discriminate between similar/non-
similar images modulo these factors. The log-likelihood that is assigned to a testing image pair (x,y) is:

log p(x,y) = −logZ +

I∑
i=1

aixi +

J∑
j=1

bjyj +

K∑
k=1

log(1 + eck+
∑F

f=1 wkf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj)). (7)

The normalizing term logZ is very demanding to compute, as it is marginalized over x, y and z. Fortunately, when we
compare many pairs of images, this term is common and can be eliminated. However, to use the unnormalized likelihood as
distance of two images is problematic, as the likelihood of a single pair (x,y) could be made arbitrarily small by rescaling
both images with some constant. To deal with that the following distance function is used:

d(x,y) = −log p(x,y)− log p(y,x) + log p(x,x) + log p(y,y), (8)

as was first proposed in [39] for a 2-layer Restricted Boltzmann machine. The normalizing terms are eliminated, and the
likelihood of any single image is normalized for both observable layers. Strictly speaking, d is a semi-metric, because the
triangle inequality is not guaranteed to hold among three testing images.

3. Experiments
After training with a large dataset of image pairs which are related by a specific set of transformations, the model is

invariant with respect to them and the distribution of distances calculated by Eq. 8 for a set of testing image pairs can be
informative for determining other factors, such as occlusions and interclass variability.

3.1. Occlusion Detection

The model is trained using Alg. 1 with training image pairs related by affine transformations, shifts and rotations, scale
and illumination variation. The first factors intend to deal with different vantage points where these images are captured
from, while the latter one with different lightning conditions. In our experiments the Gated RBM’s observable layers have
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Figure 3: Occlusion Detection between frames 7 and 8 of the “Cars8” sequence of the Berkeley Motion Segmentation
dataset. The occlusion (and disocclusion) areas are displayed on both frames. The left image pair is obtained with the
baseline algorithm, which gives many false alarms on turbulent and with variant lightning scene areas, such as the road and
the car’s front surface. The right image pair displays our detection having used the aggregate superpixel distance from Eq. 9
and m = 8 superpixel maps.

size either 13× 13 or 26× 26 and the range of pixel-wise transformations on the training set varies between 3− 6 pixels. In
order to obtain the results of this section, F = 200 filters and K = 100 hidden variables were used. The model was trained
over 10, 000 epochs, where the training set included 10, 000 purely shifted, 5, 000 purely rotated images, 5, 000 general affine
transformations, 5, 000 illumination variant and 5, 000 scaled pairs. All these transformations were applied to random, binary
training images, which empirically proved to give equally effective model compared to when training with patches cropped
from natural images. Applied transformations is all that counts instead of specific information of any single image/visible
layer. Batch size D = 100–1, 000 and 5, 000–10, 000 epochs were used in these experiments.

During testing, two frames were partitioned into d × d densely overlapping patches (d = 13 or d = 26) and Eq. 8 was
used to estimate the “distance” of corresponding patches according to the model. After training over all these factors, which
are nuisances in our setting, d(x,y) provides a score to quantify co-visibility in a testing pair (x,y) because occlusions are
the main cause of disagreement. Thresholding the distance map yields the binary occlusion map. Comparisons are made at
the patch level, but the resulting distance is applied only to the central pixel of each patch. All comparisons can be performed
in parallel. Our framework was tested on sequential video frames taken from Berkeley Motion Segmentation [6], Middlebury
[4] and UCL Optical Flow [1] datasets.

A baseline algorithm can be built where simple differences of average intensities over 13 × 13 patches are extracted
and thresholded. This procedure yields a large number of false alarms, because any movement or lightning change in the
background or the occluder affects the “naive” patch distance. On the other hand, our network’s invariance over all these
transformations provides background/foreground subtraction and the residual is mostly occlusions. Fig. 3 demonstrates this
concept.

Toward superpixels: Training the model with bigger visible layers offers invariance over larger transformations, but it
typically gives less accurate predictions close to the boundaries of the occlusion regions, as the model needs to examine
a bigger patch and deal with more nuisances. It can drive occlusion detection though by providing a mask that offers
subtraction of the larger nuisances and then testing with smaller visible layers refines the occluded regions. Moreover,
a deeper architecture would not be especially helpful, because the primary purpose of this network is to perform image
comparison modulo small deformations. It does not intend to simulate complicated transformations like facial expressions or
body poses. However, empirical work suggests that the network per se can give decent, but not competitive results, mainly
because of computational resources limitations. Training a very large Gated RBM with thousands of hidden variables and
filters over all possible transformations in theory could give an oracle that could eliminate all possible nuisances and in turn
discriminate occlusions with infinitesimal classification error. In practice, though, for a computationally tractable solution
that yields competitive occlusion detection, we turn to superpixels.

Superpixels are basically uniform intensity areas on the image domain and our conjecture is that with high probability
their pixels back-project to points in the scene with the same motion. Therefore, it is natural to resolve for entire superpixels
whether they are co-visible or not. Averaging the model’s distances over the whole superpixel is a meaningful grouping
mechanism, which is robust against outliers and follows faithfully the occlusion boundaries. However, superpixel partitions
of any single image are not useful when comparing image pairs. Therefore, we design a mechanism of jointly extracting
superpixels in two images (one common superpixel partition) in order to have pixel groups that “follow” the boundaries on
both frames and share common appearance/texture. The superpixel code [24] is based on the Boundary Detector from [22],
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Figure 4: This set of images demonstrates the influence of superpixel information in the occlusion detection task. The first
row pertains to the “Cars8” sequence from Fig. 3, while the second row shows results from the “RubberWhale” sequence
of Middlebury dataset (frames 7 and 14). At the first two images of first row we see the occlusion detection without and
with superpixel information, respectively. The third image is the ground truth. The PR curve shows an improved detection
with superpixels (maximum F1-score along the PR curve 85% instead of 79%). The corresponding curve from Ayvaci et
al. [3] is also displayed. In the second row, the first figure displays the joint superpixel partition, while the next two figures
represent the occlusion detection without and with superpixels considered. The occlusion regions consist of fewer, more
compact connected components, have fewer outliers, and fit better on the occluders’ boundaries. The PR curves verify the
visual impression.

and in order to extract joint superpixels we modified it adopting as edge probability map the maximum of the two images’
probability maps and choosing as angle θ for every pixel (i, j) the corresponding angle θ1(i, j) or θ2(i, j) of the image with
dominant gradient there. Furthermore, in order to obtain a mechanism that is less dependent on the algorithm’s randomness,
the maximum number of pixels per superpixel, the number of eigenvectors and other parameters, we extracted m superpixel
partitions for each testing image pair according to various values for the above-mentioned parameters and averaged the
distance scores over all of them. The aggregate superpixel distance is defined as:

daggregate(i) =
1

m

∑
m maps

distm(i) ∀i ∈ I, (9)

where distm(i) is the average distance score over the superpixel in map m that contains pixel i. Fig. 4 demonstrates how
occlusion detection becomes more accurate when superpixels are considered via PR curves.

In Fig. 5 we plot the performance of our occlusion detection algorithm against the number of transformations in our train-
ing set. In Table 1 we present a quantitative comparison of our occlusion detection results with [18] and [14] at sequences
from Middlebury and UCL Optical Flow datasets in terms of precision and recall statistics. Kolmogorov and Zabih [18] de-
signed an algorithm to detect occlusions in stereo image pairs, and therefore, unsurprisingly, their method can not effectively
deal with transformations more complex than the horizontal translations, which commonly appear in these sequences. We

Venus RubberWhale Text1 BrickBox1t1
Recall [18] 0.60 0.23 0.82 0.51

Precision [18] 0.63 0.31 0.68 0.49
Precision [14] 0.69 0.47 0.88 0.96

Precision (ours) 0.75 0.81 0.91 0.92

Table 1: Comparison of our occlusion detection algorithm with [18] and [14] on Middlebury and UCL Optical Flow se-
quences. The comparison is in terms of precision for the same recall values.
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Baseline algorithm based on differences of
patchwise intensity averages

Gated RBM trained on shifts

Gated RBM trained on shifts and rotations

Gated RBM trained on shifts, rotations, affine,
scale and illumination variation

Gated RBM trained on shifts, rotations, affine,
scale and illumination variation, plus
considering superpixel maps

Figure 5: Performance of our occlusion detection algorithm for different training set synthesis and against the baseline
algorithm (between frames 7 and 8 of “Cars8” sequence of Berkeley Motion Segmentation dataset).

use it as a baseline algorithm like in Humayun et al. [14]. The latter ones leverage various flow and appearance features and
present a competitive accuracy. However, they have many false alarms on edges that are not occlusion boundaries, which
originate from Canny edge detector which is one component of their algorithm. This behavior becomes obvious also through
the qualitative comparison in Fig. 6.
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Figure 6: The left image pair compares our method with an algorithm that considers both flow and boundary features [14]
on the tough, short-baseline “Venus” sequence from the Middlebury dataset. Our method (right) is able to disregard most
edges which are not occlusion boundaries because of affine-invariance; they are visible on different positions of compared
patch pairs that include them. However, although superpixels drive the occlusion boundaries, flow features still occasionally
display better behavior on boundaries. In the right image pair we compare our algorithm with a state-of-the-art optical flow
algorithm [3] on the “Cars8” sequence. Our method gives more accurate occlusion detection, especially on areas with varying
illumination, such as the windscreen and the shadow of the car. This should be compared to the ground truth in Fig. 4.

3.2. Image Segmentation

In an effort to further investigate network’s capability, we challenge it in a binary classification task with intrinsic class
variability, image segmentation from a single frame. The distance function from Eq. 8 is now used as an estimator of
dissimilarity between neighboring patches in a single image. The similarity “discontinuities” (i.e., pairs that have a lower
similarity score compared to others) is a cue of object boundaries. After thresholding the distance map, the task becomes
a binary decision problem. When a pair is dissimilar according to our comparison framework, their common boundary is
considered as object boundary. The left image pair in Fig. 7 demonstrates boundary detection examples. A less sensitive
threshold results in a finer segmentation. The images are taken from the Make3d Cornell dataset 1 [30].

The model is trained over the same spectrum of transformations that were used in occlusion detection (shifts, rotations,
affine, illumination, scale) in the same manner as before. After obtaining a binary map of similar/dissimilar neighboring patch
pairs, the Normalized Cuts algorithm [32] is used for the final segmentation, where instead of using boundary, brightness or
spatial information in the input matrix W , we use Gated RBM’s dissimilarity scores:

∀p(i1, j1), p(i2, j2) ∈ P, w12 =

{
d12, if |i1 − i2| = 0, r, 2r, 3r or |j1 − j2| = 0, r, 2r, 3r

0, otherwise
(10)

where P is an image partition in overlapping patches, r is the patch size (r = 13 in these experiments) and p(i, j) is patch
centered on pixel (i, j). Our network is nuisance invariant, thereby capable of ignoring shadow and changing illumination
effects and detecting similar textons at different scales, positions and angles. The final segmentation is semantically sensible,
in view of the fact that mainly object boundaries are detected instead of other edges which are false alarms in this setting.

Figure 7: These figures qualitatively demonstrate the concept of “semantic” image segmentation. The left image pair shows
boundary detection, based on our patch dissimilarity score. The model ignores tiles or cloud edges, which are not object
boundaries. In the middle and right image pairs we compare Normalized Cuts (left) and our method (right). As expected, the
final segmentations are similar, but our algorithm successfully disregards any boundary on the front line of the yard wall, as
a wall exists on both sides. In the right pair Normalized Cuts give a segmentation that follows the shadows. Our algorithm,
being illumination invariant, crosses the shadow while following the building wall.
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3 4. Conclusions
We have empirically tested the hypothesis that a fairly simple learning architecture can satisfactorily manage the nuisance

variability in the imaging process. To this end, we have established two binary classification tasks; one with intrinsic vari-
ability (in segmentation, patches from the same object present intraclass variability) and one without intrinsic variability (in
occlusion detection, the underlying scene is known to be the same). We have shown empirically that our network manages
to reduce nuisance variability significantly, thus challenging recent work that suggests that nuisance variability accounts for
most of the complexity in imaging data.

Using superpixel information, our framework provides competitive occlusion detection that in many cases outperforms
current state-of-the-art algorithms based on optical flow and boundary features. This is reasonable if we realize that our
method is at least equivalent with a standard optical flow algorithm, when the latter one is applied in a sufficiently large
and diverse set of different representations of the image space. However, hand-crafting features is a more complicated and
time-consuming process. The Gated RBM is capable of learning similar features automatically, while we can specialize the
setting and the nuisances that we need to deal with per application by providing the appropriate training set.

We should underline the fact that there is no preprocessing matching step. Given two images, the purpose of our frame-
work is to detect occluded regions and ignore false alarms arising from local deformations. Actually some inaccuracy in
correspondence that might be caused by motion blur or rolling-shutter phenomena is acceptable and can be “absorbed” by
our framework given its invariance in properties such as translations, rotations and scale.

5. Appendix - Mathematical Proofs
5.1. Proof of Eq. 2a (conditional distributions)

Let x−l denote the state of all units in layer x except for the lth one and then define the quantities:

αl(y,h) := −
F∑
f=1

ulf (

J∑
j=1

vjfyj)(

K∑
k=1

wkfhk)− al,

β(x−l,y,h) := −
F∑
f=1

(

I∑
i=1,i6=l

uifxi)(

J∑
j=1

vjfyj)(

K∑
k=1

wkfhk)−
I∑

i=1,i6=l

aixi −
J∑
j=1

bjyj −
K∑
k=1

ckhk.

Given the definition of the energy function in Eq. 1, we have E(x,y,h) = β(x−l,y,h) + xlαl(y,h). Thus:

p(Xl = 1|y,h) = p(Xl = 1|x−l,y,h) =
p(Xl = 1,x−l,y,h)

p(x−l,y,h)
=

1
Z e
−E(Xl=1,x−l,y,h)

1
Z e
−E(Xl=1,x−l,y,h) + 1

Z e
−E(Xl=0,x−l,y,h)

=
e−β(x−l,y,h)−αl(y,h)

e−β(x−l,y,h)−αl(y,h) + e−β(x−l,y,h)
=

e−β(x−l,y,h) · e−αl(y,h)

e−β(x−l,y,h) · (e−αl(y,h) + 1)

=
1

1 + eαl(y,h)
= σ(−αl(y,h)) = σ[

F∑
f=1

ulf (

J∑
j=1

vjfyj)(

K∑
k=1

wkfhk) + al],

where σ(x) = 1
1+e−x is the sigmoid activation function.

Given the conditional independence of variables X, the joint conditional distribution is written as:

p(x|y,h) =

I∏
i=1

B(xi;σ[

F∑
f=1

uif (

J∑
j=1

vjfyj)(

K∑
k=1

wkfhk) + ai]),

where B(x; p) is the pdf of a Bernoulli random variable x with parameter p:

B(x; p) =

{
p, if x = 1.

1− p, if x = 0.

Similar proofs hold for Eqs. 2b and 2c.
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3 5.2. Proof of Eq. 7 (marginal distribution of the visible variables)

The conditional independence of each layer’s units given the other two layers simplifies the calculations:

p(x,y) =
1

Z

∑
h

e−E(x,y,h) =
1

Z
e
∑I

i=1 aixi+
∑J

j=1 bjyj
∑
h1

. . .
∑
hK

K∏
k=1

ehk(ck+
∑F

f=1 wkf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj))

=
1

Z
e
∑I

i=1 aixi+
∑J

j=1 bjyj
∑
h1

eh1(c1+
∑F

f=1 w1f (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj)) . . .
∑
hK

ehK(cK+
∑F

f=1 wKf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj))

=
1

Z
e
∑I

i=1 aixie
∑J

j=1 bjyj

K∏
k=1

∑
hk

ehk(ck+
∑F

f=1 wkf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj))

=
1

Z

I∏
i=1

eaixi

J∏
j=1

ebjyj
K∏
k=1

(
1 + eck+

∑F
f=1 wkf (

∑I
i=1 uifxi)(

∑J
j=1 vjfyj)

)
.

Then the log-likelihood is calculated as:

log p(x,y) = −logZ + log

I∏
i=1

eaixi + log

J∏
j=1

ebjyj + log

K∏
k=1

(
1 + eck+

∑F
f=1 wkf (

∑I
i=1 uifxi)(

∑J
j=1 vjfyj)

)

= −logZ +

I∑
i=1

aixi +

J∑
j=1

bjyj +

K∑
k=1

log
(

1 + eck+
∑F

f=1 wkf (
∑I

i=1 uifxi)(
∑J

j=1 vjfyj)
)
.
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