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Abstract

Current state-of-the-art object detectors can have sig-
nificant performance drop when deployed in the wild due
to domain gaps with training data. Unsupervised Domain
Adaptation (UDA) is a promising approach to adapt detec-
tors for new domains/environments without any expensive
label cost. Previous mainstream UDA works for object de-
tection usually focused on image-level and/or feature-level
adaptation by using adversarial learning methods. In this
work, we show that such adversarial-based methods can
only reduce domain style gap, but cannot address the do-
main content gap that is also important for object detec-
tors. To overcome this limitation, we propose the SC-UDA
framework to concurrently reduce both gaps: We propose
fine-grained domain style transfer to reduce the style gaps
with finer image details preserved for detecting small ob-
jects; Then we leverage the pseudo label-based self-training
to reduce content gaps; To address pseudo label error accu-
mulation during self-training, novel optimizations are pro-
posed, including uncertainty-based pseudo labeling and
imbalanced mini-batch sampling strategy. Experiment re-
sults show that our approach consistently outperforms prior
state-of-the-art methods (up to 8.6%, 2.7% and 2.5% mAP
on three UDA benchmarks).

1. Introduction

Past few years have witnessed significant breakthroughs
on object detection using deep learning [11, 13]. How-
ever, most deep learning based object detectors are highly
data dependent and thus are susceptible to the domain gap
emerging in between the training and testing dataset, par-
ticularly in real deployment where the environment factors
change over time (e.g., weather, light condition, and am-
bient environment) [20, 29, 30]. Retraining deep learning
models with refreshed data, on the other hand, is not al-
ways feasible due to labor-intensive and expensive data la-
beling [16]. To this end, Unsupervised Domain Adapta-
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Figure 1: We separate the concept of domain gaps into (a) style
gap and (b) content gap. As we will show, both gaps can incur
performance drops in domain adaptation.

tion (UDA) technique becomes a promising alternative so-
lution [37, 5, 17, 35, 22].

Existing UDA methods [8, 29, 22] are primarily de-
signed for reducing the style gap (e.g., the difference in
color, texture, and brightness) between the well-learned
training dataset (source domain) and the unpredictable test-
ing dataset (target domain), as shown in Fig. 1 (a). Recent
works on the image classification task, on the other hand,
reveal that the content gap severely undermines the classi-
fication performance. An illustrative example is shown in
Fig. 1 (b) where two popular benchmark datasets KITTI [9]
and Cityscapes [6] manifest distinct distribution on label
density. While the content gap has been proved detrimental
to image classification in literature [34, 27, 19, 1], the im-
pact of content gap on object detection task remains an open
question, even though it could be prevalent in practice, such
as building styles, traffic patterns, and landscapes, etc., may
differ across geographic areas and even change over time.

Our Contribution: In this paper, we quantitatively analyze
the significant impact of style and/or content gaps on object
detection. Motivated by it, we propose SC-UDA — a Style
& Content Gaps aware UDA framework to reduce both style
and content gaps in object detection. We summarize the key
design components below.

• To reduce the style gap, we propose a Fine-grained
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Domain Style Transfer technique. Such design im-
proves the style transfer with finer granularity and bet-
ter preserves low-level styles (e.g., local edges, tex-
tures) for small objects, which are beneficial to the
downstream object detection task.

• To address the content gap, we annotate the dataset
in the target domain with high-quality pseudo labels
and conduct iterative Self-Training to train detectors on
both source-domain and target-domain datasets. Such
pseudo labels are optimized to approximate the content
distribution in the target domain, thus helping reduce
the content gap in the domain adaptation.

• As the pseudo labels in self-training can introduce la-
bel errors and influence the adaptation quality, we fur-
ther propose two optimizations: (i) Uncertainty-based
pseudo label fusion to generate high-quality pseudo la-
bels; (ii) Imbalanced mini-batch sampling to adjust the
supervision ratio of real and pseudo labels to balance
the influence of potential label errors.

We evaluate our proposed SC-UDA framework on sev-
eral detection adaptation benchmarks, including synthetic-
to-real, cross-camera, and normal-to-foggy, that represent
different degrees of domain style and content gaps. Our
approach demonstrates consistently better results than the
best prior works by up to 8.6%, 2.7%, and 2.5% mAP on
three benchmarks, achieving the new state-of-the-art do-
main adaptive object detection performance. We also ablate
the importance of each key component of SC-UDA towards
domain adaptation improvements on object detection tasks.

2. Related Work
Unsupervised Domain Adaptation: State-of-the-art deep
neural networks often face significant performance drop due
to the changing environments. Many unsupervised domain
adaptation (UDA) techniques are proposed, e.g., MMD dis-
tance minimization [12], sub-space alignment [7]. Recently,
adversarial learning based methods with gradient reverse
layer for feature-invariant learning achieved great perfor-
mance for classification adaptation problems [8]. Many
works also generalized it into other vision tasks including
semantic segmentation [14, 33], object detection [5], etc.
However, UDA for classification concerns only single ob-
ject per image, while detector adaptation targets at images
with multiple objects. Thus, UDA for detection requires
more fine-grained adaptation than classification.

Domain Adaptation for Detection: Similar to UDA in
classification, the predominant trends of UDA works for ob-
ject detection also used adversarial learning based methods.
For example, [5] first used adversarial learning methods to
align the image-level and instance-level features. Following
that, [37] proposed a region-level alignment method to tar-
get at a middle granularity. Some other adversarial methods
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Figure 2: We conduct style randomization [10] to introduce style
gaps (S1 to S2). Then the source dataset is changed to further
involve the content gaps (S2 to S3). In the test results, both gaps
are shown to incur performance drops in domain adaptation.

have also targeted at different levels with weighting strate-
gies [25, 31, 15]. These methods can well solve the style
gaps between different domains. But due to the challenges
like varied object classes, locations and densities, adversar-
ial methods may cause certain feature misalignment. More-
over, these methods mostly focused on feature alignment
on image style gaps and did not account for content distri-
bution gap (e.g., different object density distribution) which
are also important for object detection.

Self-Training for UDA: Self-Training with pseudo labels
utilizing both labeled and unlabeled data has been shown to
be an effective way of using unlabeled data to boost the end-
task performance [21, 18, 2]. Such combined dataset setting
also applies to the UDA problem, where we have labeled
source domain and unlabeled target domain. Recently, there
are a few works utilizing self-training for UDA problems in
classification, segmentation, and detection tasks. For exam-
ple, [38, 39] utilized self-training for classification and seg-
mentation adaptation. [17] utilized weak self-training for
single-shot detector adaptation. [24] used pseudo-labeled
data but the labels are from extra video data annotation,
which belongs to weakly-supervised domain adaptation.

One common shortcoming of previous methods is that
they mostly used classification confidence as the label se-
lection criteria. However, such confidence-based selection
is usually sub-optimal in detection as it fails to represent the
localization accuracy. Therefore, we re-innovate the pseudo
labeling method with uncertainty-based box selection and
fusion method for detection tasks.

3. Analysis: Style and Content Gaps
In this section, we confirm the existence and quantify the

influence of style/content gap in object detection. Specif-
ically, we leverage style randomization [10] and content
manipulation to disentangle the performance degradation



S1: Cityscapes Subset-1 S2: Cityscapes Subset-2

S1: Cityscapes
Distribution

+ Content Gap

S2: KITTI
Distribution

Instance density per image

Fr
eq
ue
nc
y

Test Results on
Original Cityscapes

63.0%

58.3%

S1 S2

Figure 3: We test content gap by making two Cityscapes subsets
with the same number of images but following two different den-
sity distributions. The content gap alone is also shown to affect the
adaptation performance. (Detailed settings in supp. material.)

caused by style and content gaps, respectively.
Impact of Style Gap: First, we transform the style of
Cityscapes dataset (S1-Cityscapes) to different styles (S2-
Cityscapes) through style randomization. The visualization
examples are shown in Fig. 2. By doing so, we witness that
the style gap alone (without content change) results in cer-
tain mAP drop on detection performance (77.2% → 74.8%).
Impact of Style + Content Gap: In Fig. 2, we then intro-
duce content gap on S3-SIM10K: a style transferred dataset
sharing the same randomized styles with S2-Cityscapes but
differs in their content distribution. We test the S3-trained
model on the original Cityscapes testset and observe that
the style and content gaps together incur more significant
(74.8% → 47.0%) performance drop.
Impact of Content Gap: We further analyze content gap
alone by selecting two subsets from Cityscapes with same
number of images (500) but following two density distribu-
tions (Cityscapes and KITTI distribution). Models trained
on two subsets are then tested on the Cityscapes testset.
As Fig. 3 shows, the detector trained on KITTI-distribution
shows non-negligible mAP drop (63.0% → 58.3%) due to
certain content gap with the Cityscapes distribution.
Motivation: Reducing Both Style & Content Gaps: The
above results demonstrate that both style and content gaps
are detrimental to object detection performance. Unfortu-
nately, previous UDA works usually tackle the style gap
while ignoring the content distribution gaps, thus only
achieving sub-optimal performance.

To reduce the content gap influence, one intuitive way is
to involve the real target-domain data distribution into the
training process. To verify its effectiveness, we conduct a
preliminary test by SIM10K to Cityscapes domain adapta-
tion with two auxiliary Cityscapes subsets. Specifically as
shown in Fig. 4, one Cityscapes subset (S1) is sampled from
the overlapped distribution, while the other one (S2) is sam-
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Figure 4: We reduce content gap by combining two Cityscapes
subsets following two density distributions into SIM10K dataset.
Here adding the subset (S2) whose distribution is non-overlapped
with SIM10K leads to higher performance than the other (S1).

pled from the less-overlapped distribution. Training models
using these two settings, SIM10K+S2 (76.4%) shows much
better performance than SIM10K+S1 (68.2%), indicating
the advantages of involving the missing distributions.

Such results show the effectiveness of involving missing
content distributions to reduce the content gaps. Based on
this, our work proposes to involve the target-domain dataset
into training by adopting pseudo labels for content gap re-
duction. Combined with the fine-grained style transfer for
style gap reduction, we propose a holistic framework that
could concurrently reduce style & content gaps, achieving
the new SOTA performance in UDA for detection.

4. SC-UDA Framework

Framework Overview: Our framework consists of two
major steps as shown in Fig. 5:

(a) Fine-grained Domain Transfer: We first conduct do-
main style transfer to reduce the style gaps. Considering
the detector needs to detect multi-scale objects from large
to small, we conduct style transfer with the finest granular-
ity to better preserve small object details, which is shown
to greatly boost the detection adaptation performance. An
initial annotator will be trained on the transferred domain to
generate initial pseudo labels on the target domain to launch
the following self-training process.

(b) Iterative Self-Training: We then run iterative self-
training to reduce the content gap by combing the source
domain data and the target domain data (with pseudo la-
bels). As the pseudo label may contain errors, we also
propose two optimization techniques: (1) Uncertainty-
based Pseudo Label Optimization, a novel uncertainty-
based pseudo label selection and fusion method, which out-
performs the confidence-based labeling by large margins;
(2) Imbalanced Mini-batch Sampling to balance the train-
ing error and stabilize the self-training process.
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Figure 5: SC-UDA Framework Overview. (a) Fine-grained domain transfer first transfers the source to an intermediate domain to reduce
style gaps. A detector is trained on the intermediate domain as the initial pseudo label annotator. (b) Then we conduct iterative self-training
with combined source/target domain data to reduce content gaps. Two optimizations are proposed to mitigate label error’s influence: (b-1)
imbalanced mini-batch sampling; (b-2) uncertainty-based box fusion to generate high-quality labels.
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Figure 6: We optimize CycleGAN with receptive field restrictions
to conduct detection-oriented fine-grained style transfer.

4.1. Domain Transfer for Style Gap Reduction

In SC-UDA, we first conduct domain style transfer to re-
duce the style gap by an optimized CycleGAN model [36].
The initial CycleGAN design is often coarse-grained that
can dramatically change the image backgrounds and edges
of objects, as shown in Fig. 6 (b). Such coarsely transferred
images can become harmful for detectors to detect small
objects. Therefore, we propose to address this limitation
by optimizing it with receptive field restriction to conduct
detection-oriented fine-grained style transfer.

4.1.1 Receptive Field Restriction

To benefit the detector adaption, the style translator should
less touch the global contents but focus more on the low-

level styles (e.g., local textures, object details, etc). To this
end, we optimize CycleGAN with a simple yet effective
method by imposing restrictions on the model’s receptive
field. Specifically, given the training loss of native GAN
(same for the cycle consistency loss):

LGAN (G,D,Xs, Xt) = Ex∼p(t)[logDT (x
′

t)]

+Ex∼p(s)[log(1−DT (G(x
′

s)))],
(1)

instead of using the full-size source images xs ∼ p(s) and
target images xt ∼ p(t), we crop random patches x

′

s and
x

′

t from the image pairs as the input, as shown in Fig. 6
(c). In this way, the receptive field of CycleGAN can be
then restricted to be much smaller than most objects, so that
it learns to translate only local textures instead of objects,
fulfilling the goal of fine-grained style transfer.

Figure 6 (b) and (c) compare the results of coarse-
/fine-grained translation. For coarse-grained translation,
the background/objects of seed image are dramatically
changed. While for the fine-grained translation, only local
textures are changed to match the target domain and the ob-
jects details are well-preserved. As we will show later, such
fine-grained design can greatly benefit the small object de-
tection adaptation performance in various of scenarios.

Source to Intermediate Domain Transfer: Based on the
fine-grained style translation model, we then translate the
data from source domain (Xs, Ys) to the intermediate do-
main (Xm, Ys). With smaller style gaps from the target
domain, the intermediate domain data (Xm, Ys)will then be
utilized for pseudo label initialization to launch the follow-
ing self-training process.



4.2. Self-Training for Content Gap Reduction

To further reduce the content gaps, we next conduct
self-training with both optimized pseudo labels and a error-
balanced training process.

4.2.1 Iterative Self-Training with Pseudo Labels

The basic idea of self-training is combining both source and
target data into training process, where the target domain
data is pseudo labeled. This process follows several steps:
(a) pseudo label initialization, (b) self-training, and (c) iter-
ate with better pseudo labels.
Pseudo Label Initialization: To get the pseudo labels, we
first train an initial annotator (model) Finit(θ, ·) on the style
transferred data in the intermediate domain (Xm, Ys):

Minimize Ex,y∼(Xm,Ys)[ Loss(Finit(θ, x), y) ], (2)

where θ is the detector weights, and (Xm, Ys) is the style-
transferred intermediate domain data. The annotator is then
applied on the target domain images to get the prediction
results as pseudo labels:

Y psd
t = F (θ,Xt). (3)

Self-Training with Pseudo Labels: Although pseudo la-
bels are not perfectly accurate, they enable us to involve
the real target domain data distribution during training. We
therefore retrain the new model F (θ, ·) by combining both
source/target domain data to further boost the performance:

Minimize Ex,y∼(Xs,Ys)[ Losss(F (θ, x), y) ]

+Ex,y∼(Xt,Y
psd
t )[ Losst(F (θ, x), y) ].

(4)

Iterate with Better Labels: With the target domain data
involved, self-training could often yield better performance.
Therefore, we can use the new model as a better annotator
to improve the pseudo label quality. Such a “self-labeling"
and “self-teaching" process could be conducted for multiple
rounds, forming the iterative self-training process.

4.2.2 Uncertainty-based Pseudo Label Optimization

Due to the prediction inaccurateness, the pseudo labels can
inevitably contain some errors. Traditional pseudo label op-
timization commonly chooses labels above high confidence
thresholds, e.g., in many classification problems [23, 3].
However, as detectors contain both classification and lo-
calization heads, the classification confidence can fail to
indicate the localization accuracy, making the confidence
thresholding ineffective for detection tasks.

To avoid such issues, we propose an uncertainty-based
box selection & fusion method to enhance the pseudo label
quality for the detection problem. The general idea is shown
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Figure 7: Uncertainty-based Detection Pseudo Labeling. We se-
lect boxes with high certainty (higher IoUs) and fuse their coordi-
nates to generate accurate box labels.

in Fig. 7: We obtain multi-sets of predictions from different
detectors. If the predictions show high localization agree-
ment on the same box, we consider it has higher certainty
and is more likely to be true. We then conduct box fusion
to generate the final coordinates, otherwise these boxes are
removed to exclude inaccurate pseudo labels.
Multi-Detector Simulation via Stochastic Inference: To
get the uncertainty estimation, we first need to get multi-
ple sets of predictions and detectors. Previous uncertainty
methods like Mean-Teacher [28] and Co-Teaching [4] train
multiple models or multiple network heads, bringing many
training/parameter overheads.

By contrast, we propose to conduct multi-detector sim-
ulation in a overhead-free way via stochastic inference.
Specifically, stochastic dropout is added in detector’s ROI
feature extractor layers during both training and testing
phases. To get multi-sets of pseudo labels, we conduct
model inferences with different dropout masks ξ:

Y psd
t (ξ) = F (θ, ξ, Xt), where ξ ∼ Ber(p). (5)

Here Ber(p) is the Bernoulli distribution with dropout ratio
p (usually set as 0.5) to generate the dropout mask.

With such stochastic inference, we can thus get
multi-sets of pseudo labels but without any extra train-
ing/parameter overheads1.
Uncertainty-based Box Selection & Fusion: With multi-
sets of pseudo labels via stochastic inference, the next step
is to select the boxes with higher localization agreement
(i.e., lower uncertainty).

To do so, we evaluate the boxes’ localization agreement
by the Intersection-over-Union (IoU) metric. As shown in
Fig. 7 (a), for the n boxes with higher localization IoUs
than the given threshold, we regard them as with lower un-
certainty. We then retain the boxes and fuse them into one

1Notably, the drop out layer is also commonly used in detection model
training and incurs no accuracy influence on the detector performance.



final box by coordinate averaging. By contrast in Fig. 7 (b),
the less-overlapped boxes with smaller IoUs are removed
from the pseudo label sets as they are more likely to contain
inaccurate localization coordinates, and thus are considered
harmful to the training process. Therefore, the pseudo label
selection is defined as:

ypsdi =

{
1, IoU(box0,1,...n) > δ;

0, Otherwise.
(6)

Here δ is the IoU threshold among n boxes to estimate the
localization uncertainty of the boxes. If the box is selected,
the final localization coordinates are obtained by averaging:

Fused coordinates = E
boxi∼Y

psd
t (ξi)

[box0,1,...n] (7)

And the classification label is obtained by major voting of
n boxes, which we find accurate for most boxes.

Fig. 7 (c)(d) show an example of the above uncertainty-
based box selection process. Specifically, we use 3 sets
of pseudo labels generated by our stochastic inference. As
shown in Fig. 7 (c), the true boxes with objects inside usu-
ally show high IoUs, while the wrong boxes did not. By
our uncertainty-based box selection and fusion method, we
could thus remove such wrong predictions and generate
more accurate pseudo labels as shown in Fig. 7 (d).

4.2.3 Balancing Error by Imbalanced Sampling

Besides the uncertainty-based methods, we also propose
an imbalanced sampling strategy to reduce the influence
of pseudo label errors. Specifically, during self-training,
the target domain loss Losst in Eq. 4 can become inaccu-
rate due to the pseudo label error. By contrast, the source-
domain samples have ground-truth labels (Xs, Ys), Losss
is more accurate. Therefore, we propose a weighted super-
vision loss in source/target domains for self-training.

To do so, we statistically over-sample the source images
and under-sample the target images in each mini-batch to
adjust the ratio of source/target-domain supervision:

Loss =

i∑
0

Losss +

j∑
0

Losst, s.t. i > j, (8)

where i and j denote the sampling number of source and
target domain images in each mini-batch.

As we will analyze later, the pseudo labels usually con-
tain localization errors. In such case, the source-domain
labels provide correct localization loss as supervision, help-
ing improve the final adaptation performance.

5. Experimental Evaluation

Experiments Setup: We follow the experiment settings
of previous works [5, 37, 25, 31]. The detector is Faster-
RCNN with VGG16 backbone. Three benchmarking do-

Table 1: KITTI to Cityscapes Adaptation Performance. We im-
plement both resolution settings (512 & 600) for fair comparisons.

Methods Car AP
512Baseline [non-adapt] 36.4
512CVPR’18 [5] 38.5
512CVPR’19 [37] 42.5
512Ours w/ ST 42.6 (+6.2)
512Ours w/ DT 41.4 (+5.0)
512Ours w/ (DT + ST) 45.2 (+8.8)
512Oracle Performance 61.6

600Baseline [non-adapt] 37.5
600Ours w/ (DT + ST) 46.4 (+8.9)
600Oracle Performance 62.7

Table 2: SIM10K to Cityscapes Adaptation Performance.

Methods Car AP
512Baseline [non-adapt] 33.0
512CVPR’18 [5] 39.0
512CVPR’19 [37] 43.0
512Ours w/ ST 40.6 (+7.6)
512Ours w/ DT 48.1 (+15.1)
512Ours w/ (DT + ST) 49.0 (+16.0)
512Oracle Performance 61.6

600Baseline [non-adapt] 34.6
600CVPR’19 [25] 42.3
600ICCV’19 [31] 42.8
600CVPR’20 [35] 43.8
600Ours w/ (DT + ST) 52.4 (+17.8)
600Oracle Performance 62.7

main adaptation scenarios are evaluated, namely Synthetic-
to-Real (Sim2City), Cross-Camera (Kitti2City) and Normal-
to-Foggy (City2Foggy). For the image size, previous works
mainly use two settings: 512 pixels or 600 pixels as the
image’s shorter side. Works using higher resolution (600
pixels) usually achieve better performance [25, 31]. For fair
comparison, we report and compare our results under both
settings. We use the mean average precision (mAP) at IoU
threshold 0.5 for evaluation.

5.1. Overall Domain Adaptation Performance

Cross-Camera Adaptation: We first evaluate our frame-
work in cross camera scenarios, KITTI → Cityscapes [9].
Task of single-class car detection is evaluated as per the
setting in [5, 37, 36, 25, 31]. Baseline represents source-
domain trained models. The ST denotes applying our itera-
tive self-training only, and DT denotes the fine-grained do-
main transfer (DT) only. Oracle represents the performance
trained on fully-labeled target domain.

The results are shown in Table 1. Compared to baseline,
ST alone and DT alone improve AP by +6.2% and +5.0%,
respectively. Finally, combining ST+DT brings +8.8% im-



Table 3: Multi-Class Cityscapes to Foggy-Cityscapes Adaptation Performance

Methods Person Rider Car Truck Bus Train Motor Bicycle mAP
512Baseline [non-adapt] 24.4 30.5 32.6 10.8 25.4 9.1 15.2 28.3 22.0
512CVPR’18 [5] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
512CVPR’19 [37] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
512Ours w/ (DT + ST) 33.9 38.7 52.1 26.3 43.4 32.9 27.5 35.5 36.3 (+14.3)
512Oracle Performance 40.7 44.7 61.9 28.2 51.3 33.0 31.4 40.9 41.5

600Baseline [non-adapt] 29.7 32.2 44.6 16.2 27.0 9.1 20.7 29.7 26.2
600CVPR’19 [25] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
600ICCV’19 [31] 33.2 44.2 44.8 28.2 41.8 28.7 30.5 36.5 36.0
600CVPR’20 [32] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
600CVPR’20 [35] 34.0 46.9 52.1 30.8 43.2 29.9 34.0 37.4 38.6
600Ours w/ (DT + ST) 38.5 43.7 56.0 27.1 43.8 29.7 31.2 39.5 38.7 (+12.5)
600Oracle Performance 42.7 49.2 63.4 35.8 53.1 22.7 33.5 39.7 42.5

provement over baseline, which outperforms the previous
best result [37] by +2.7%.

Synthetic-to-Real Adaptation: We then evaluate the
synthetic to real adaptation scenario with SIM10K →
Cityscapes datasets. SIM10K is a synthetic dataset gen-
erated by the GTA-V game engine [16], and Cityscapes
consists of images of real street scenes taken at different
cities [6]. The results are shown in Table 2.

Compared to baseline, our methods of ST and DT im-
proves car AP by +7.6% and +15.1%, respectively. By
combining both methods (DT+ST), the result boosts up to
49.0% AP (+16.0%). Compared to prior SOTA works, our
approach achieves the current best performance, +6.0% and
+8.6% better than the best prior works in 512 and 600 pixel
resolutions, respectively.

Multi-Class Normal to Foggy Adaptation: We fi-
nally evaluate our framework on Cityscapes → Foggy-
Cityscapes [26] as a multi-class scenario. As shown in Ta-
ble 3, our approach achieves the best performance under
both resolution settings (512 and 600), achieving +14.3%
and +12.5% mAP compared to baseline performance. Com-
pared to other SOTA works [37, 31, 35, 17], our method
achieves consistent mAP improvement (e.g., +2.5% in 512
settings, +0.1%∼4.4% in 600 settings). Note that, our per-
formance (38.7%) has nearly achieved the oracle model per-
formance (42.5%) with only a 3.8% mAP margin, demon-
strating the adaptation effectiveness.

5.2. Self-Training Improvement Analysis

In this part, we aim to understand why source + target-
domain self-learning helps improve the overall detection
performance. To do so, we evaluate the contribution of dif-
ferent loss components (classification & localization loss)
from different labels (source-domain GT labels & target-
domain pseudo labels). The results are shown in Table 4.

Pseudo Labels Help Classification: We first evaluate the
target-domain pseudo label’s contribution. As the first four

Table 4: Localization/Classification Loss Analysis.

Train Settings (Kitti2City) AP

Source only 36.4
Source + Target (localization loss only) 31.3 (-5.1)
Source + Target (classification loss only) 43.5 (+7.1)
Source + Target (both) 44.3 (+7.9)

Target only 40.8
Source (localization loss only) + Target 44.4 (+3.6)
Source (classification loss only) + Target 43.5 (+2.7)
Source (both) + Target 44.3 (+3.5)

rows in Table 4 show, pseudo labels benefit the detector
(+7.1%) most when only classification loss is used. By
contrast, the localization loss alone hurts the performance
(-5.1%). This implies that most pseudo labels correctly cov-
ered target objects, which indeed promote detectors to learn
genuine object features in the target domain.
GT Labels Help Localization: By contrast, the GT labels
in the source domain bring more gain from the localization
loss (+3.6%). This implies the importance of GT labels’ lo-
calization supervision, i.e., to provide accurate localization
loss and also mitigate the pseudo labels’ localization errors.

The above results show an interesting complementary
learning effect in self-training, that is learning from the
pseudo labels’ genuine classification features as well as GT
labels’ accurate localization features, which empirically ex-
plains the performance improvement of our method.

5.3. Improvement beyond Adversarial Methods

In this part, we show that previous adversarial-based
methods can only address the style gap, but our approach
can further reduce the content gap by self-training. We com-
pare our approach with Frcnn in the wild [5], one of the
representative feature adversarial learning methods. The re-
sults are shown in Table 5. Both methods are using MaskR-
CNN detector with ResNet50 backbone, and trained/tested



Table 5: Improvement beyond Adversarial Methods.

Methods Car AP

Baseline [non-adapt] 45.4
Frcnn in the wild [5] 52.5
Fine-Grained Domain Trans. (DT) 62.8

DT + Frcnn in the wild 63.1 (+0.3)
DT + ST-1st Iter 66.1 (+3.3)
DT + ST-2nd Iter 68.1 (+5.3)
DT + ST-3rd Iter 69.8 (+7.0)

Table 6: Benefits of Fine Granularity in Domain Transfer.

Granularity 5122 (coarse) 2562 1282 (fine)

Sim2City 42.4 44.3 48.1 (+5.7)
Kitti2City 40.5 40.0 41.4 (+0.9)

City2Foggy 30.0 30.6 34.3 (+4.3)

on full resolution images in SIM10K and Cityscapes.
As Table 5 shows, Frcnn approach can achieve 52.5%

AP with +7.1% improvement over baseline (45.4%). By
comparison, our fine-grained domain transfer achieves
62.8% (+17.4% gain), demonstrating the performance ad-
vantages of our fine-graiend DT.

Meanwhile, we can notice that, on top of our DT style
translation (62.8%), adversarial learning method Frcnn in
the wild can hardly bring any further performance gain
(only +0.3%). By contrast, our self-training method could
still continually improve performance and finally outper-
form DT by a large margin (+7.0%).

We hypothesize this is because Frcnn and our style trans-
fer (DT) are both targeting at reducing the style gap. As DT
has already reduced the style gap to a large extent in the
pixel level, adversarial method Frcnn in feature level thus
cannot yield further improvement. In contrast, the iterative
self-training (ST) can further reduce the content gap by in-
volving the real data into training, suggesting a new explo-
ration space in improving UDA for detection.

6. Ablation Study for Design Modules
Effectiveness of Fine Granularity: We first show the ben-
efits of the fine granularity design in the domain style trans-
fer. Specifically, we trained three style translation mod-
els with coarse-to-fine granularities: 5122, 2562, 1282.
Their final adaptation results are shown in Table 6. As
we can see, detector’s adaptation performance consistently
improves with finer granularity (e.g., +5.7% in Sim2City,
+4.3% in City2Foggy). The reason is that with finer gran-
ularity, the contexts and small objects are better maintained
during the style translation. More visualizations could be
found in supp. materials.
Effectiveness of Uncertainty-based Labeling: To demon-

Table 7: Benefits of Uncertain-based Pseudo Labeling.

Methods CF0.5 CF0.6 CF0.7 Ours

Sim2City 51.4 51.9 51.6 52.4 (+1.0)
Kitti2City 44.6 44.4 44.5 46.4 (+1.8)

City2Foggy 38.2 38.0 38.0 38.7 (+0.5)

Table 8: Benefits of Imbalanced Sampling in Self-Training.

GT : Pseudo 0:4 1:3 2:2 3:1

Sim2City 46.2 47.0 48.2 49.0 (+2.8)
Kitti2City 40.8 41.0 41.8 44.3 (+3.5)

City2Foggy 32.5 35.1 35.6 35.7 (+3.2)

strate the effectiveness of our uncertainty-based labeling,
we compare our method with common confidence-based
thresholding methods (CF). Throughout our experiments,
we use the fixed IoU threshold 0.6 for box uncertainty esti-
mation, which is robust on all of our datasets.

Table 7 quantifies the performance gain: In three adap-
tation scenarios, our uncertainty-based labeling could con-
sistently achieve +0.5% to +1.8% mAP improvement than
CF-based labeling with different thresholds.

Effectiveness of Imbalanced Sampling: As pseudo labels
inevitably contain errors, imbalanced sampling by weighing
more on the GT labels is designed to mitigate the pseudo
label biases and improve the training performance.

The results in Table 8 verify our design: First, the GT
and pseudo label sampling ratio at 0:4 (i.e., no GT labels
being sampled) gives the least performance for all settings.
By sampling more GT data in each mini-batch, the adap-
tation performance consistently improves and achieves the
best at 3:1 ratio, +2.8%∼3.5% mAP improvement.

By detailed analysis, we find the imbalanced sampling
mainly helps mitigate the label errors in the localization:
Due to that pseudo labels’ coordinates are usually devi-
ated, involving more GT labels wtih accurate coordinates
provides important localization supervision during training,
and thus helps the overall performance. The detailed local-
ization/classification study could be found below.

7. Conclusion
In this work, we propose SC-UDA: a style & content

gaps aware UDA framework to address the unsupervised
domain adaptation for object detection. Specifically, we
conduct fine-grained domain transfer to reduce the style gap
first and then launch our iterative self-training to reduce the
content gaps. Optimizations including uncertainty-based
pseudo labeling and imbalanced sampling are proposed to
mitigate the pseudo label errors’ influence. Experiments
demonstrate the effectiveness of our framework, which out-
performs previous SOTA by large margins in various adap-
tation scenarios.
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