
HyperSTAR: Task-Aware Hyperparameters for Deep Networks

Gaurav Mittal⋆† Chang Liu⋆‡ Nikolaos Karianakis† Victor Fragoso† Mei Chen† Yun Fu‡

†Microsoft ‡Northeastern University

{gaurav.mittal, nikos.karianakis, victor.fragoso, mei.chen}@microsoft.com

liu.chang6@husky.neu.edu yunfu@ece.neu.edu

Abstract

While deep neural networks excel in solving visual

recognition tasks, they require significant effort to find hy-

perparameters that make them work optimally. Hyperpa-

rameter Optimization (HPO) approaches have automated

the process of finding good hyperparameters but they do not

adapt to a given task (task-agnostic), making them compu-

tationally inefficient. To reduce HPO time, we present Hy-

perSTAR (System for Task Aware Hyperparameter Recom-

mendation), a task-aware method to warm-start HPO for

deep neural networks. HyperSTAR ranks and recommends

hyperparameters by predicting their performance condi-

tioned on a joint dataset-hyperparameter space. It learns

a dataset (task) representation along with the performance

predictor directly from raw images in an end-to-end fash-

ion. The recommendations, when integrated with an exist-

ing HPO method, make it task-aware and significantly re-

duce the time to achieve optimal performance. We conduct

extensive experiments on 10 publicly available large-scale

image classification datasets over two different network ar-

chitectures, validating that HyperSTAR evaluates 50% less

configurations to achieve the best performance compared to

existing methods. We further demonstrate that HyperSTAR

makes Hyperband (HB) task-aware, achieving the optimal

accuracy in just 25% of the budget required by both vanilla

HB and Bayesian Optimized HB (BOHB).

1. Introduction

Transfer learning has become a de-facto practice to

push the performance boundary on several computer vision

tasks [8, 49], most notably image classification [16, 19, 38].

Although transfer learning improves performance on new

tasks, it requires machine learning (ML) experts to spend

hours finding the right hyperparameters (e.g., learning rate,

layers to fine-tune, optimizer, etc.) that can achieve the

best performance. Researchers have relied on Hyperpa-

⋆ Authors with equal contribution.

This work was done when C. Liu was a research intern at Microsoft.

Performance

Predictor

Rank 1

Rank 2

…

Rank N

Config. 1

Performance

Config. 2

Config. N

…

Unseen Dataset

Optimal

Configuration

HyperSTAR

…

(,)
Dataset A

Config. 1

Performance

Config. 2

Config. N

…

(,)
Dataset Z

Config. 1

Performance

Config. 2

Config. N

…

Prior Knowledge

Random

Search

Task-Agnostic

HPO

…

Hyperband

Task-Aware Warm-Start

Figure 1. HyperSTAR learns to recommend optimal hyperparame-

ter configurations for an unseen task by learning end-to-end over a

joint dataset-hyperparameter space. These recommendations can

accelerate existing HPO methods leading to state-of-the-art per-

formance for resource-constrained budgets.

rameter Optimization (HPO), ranging from simple random

search [3] to sophisticated Bayesian Optimization [39] and

Hyperband [29], to reduce manual effort and automate the

process of finding the optimal hyperparameters. Though

more effective than manual search, these approaches are

still slow since most of them trigger the same procedure for

any new task and do not leverage any information from past

experiences on related tasks.

Many approaches accelerate HPO [24, 27, 41] includ-

ing “warm-start” techniques which exploit the correlation

among tasks [41, 36, 12, 2, 47]. Some of these use meta-

learning to warm-start HPO by exploiting the task infor-

mation (meta-features) from past searches [12]. These

methods either guide the search policy for hyperparame-

ters using a learned prior over hand-crafted dataset statis-

tics [12, 48, 2], or pick the search policy of the most simi-

lar task from a database [47, 10]. Although these methods

accelerate HPO, there is no method that leverages visual-

based priors or learns deep feature representations to jointly

encode dataset and hyperparameters to expedite HPO on

8736

large-scale image classification tasks. Having such a rep-

resentation can help systems warm-start and tailor an HPO

method based on the task to optimize. While Kim et al. [25]

and Wong et al. [44] suggest using image features to un-

derstand the task, their efforts lack a joint representation

for the tasks and hyperparameters. We argue that a joint

dataset-hyperparameter representation is crucial for large-

scale, real-world image classification problems.

With the advent of AutoML [20], there is a strong in-

terest for systems [11, 23] to fully automate the process of

training a model on a customer image dataset. To cater to

a large number of users, it is essential for AutoML sys-

tems to be efficient in searching for the optimal hyperpa-

rameters. Given the diversity of real-world image datasets,

it is also necessary to prioritize the hyperparameter con-

figurations in a task-aware manner rather than being task-

agnostic. A task-aware mechanism understands a given

dataset and recommends configurations that can operate

well on that dataset. On the other hand, a task-agnostic

mechanism treats all datasets equally and sets off the same

configuration search regardless of the task.

In order to enable task-aware HPO, we introduce Hyper-

STAR (System for Task-Aware Recommendation), a warm-

start algorithm that prioritizes optimal hyperparameter con-

figurations for an unseen image classification problem. Hy-

perSTAR learns to recommend hyperparameter configura-

tions for a new task from a set of previously-seen datasets

and their normalized performance over a set of hyperparam-

eter configurations. It comprises of two phases: an offline

meta-learning phase and an online recommendation phase.

In the meta-learning phase, HyperSTAR trains a network to

first learn a task representation for a given dataset directly

from its training images. Then, it uses the representation

to learn an accuracy predictor for a given configuration. In

the recommendation phase, HyperSTAR predicts the accu-

racy for each hyperparameter configuration given the task

representation of an unseen dataset. It then exploits these

predictions to generate a ranking which can be used to ac-

celerate different HPO approaches by prioritizing the most

promising configurations for evaluation. See Fig. 1 for an

illustration of HyperSTAR.

Our extensive ablation studies demonstrate the effective-

ness of HyperSTAR in recommending configurations for

real-world image classification tasks. We also formulate a

task-aware variant of Hyperband (HB) [29] using the rec-

ommendation from HyperSTAR and show that it outper-

forms previous variations [29, 9, 47] in limited time budget

HPO settings. To the best of our knowledge, HyperSTAR is

the first warm-starting method that learns to accelerate HPO

for large-scale image classification problems from hyperpa-

rameters and raw images in an end-to-end fashion.

In sum, the contributions of this work are the following:

• A meta-learning framework, HyperSTAR, that recom-

mends task-specific optimal hyperparameters for un-

seen real-world image datasets.

• The first method to recommend hyperparameters based

on a task-representation learned jointly with a perfor-

mance predictor end-to-end from raw images.

• HyperSTAR can warm-start and accelerate task-

agnostic HPO approaches. We demonstrate this by in-

tegrating HyperSTAR with Hyperband which outper-

forms existing methods in limited budget setting.

2. Related Work

The simplest solution to find hyperparameters for an al-

gorithm is via a grid search over all the possible parame-

ters [3]. Since it is slow and computationally expensive,

the community introduced methods such as Bayesian Op-

timization (BO) [39, 40, 26] that use Gaussian processes

for probabilistic sampling and Hyperband [29] which uses

random configuration selection and successive halving [22]

to speed up HPO. Falkner et al. [9] proposed BOHB, a

Bayesian optimization and Hyperband hybrid that exploits

the tradeoff between performance and time between BO

and HB. For low time budgets, BOHB and Hyperband are

equally better than BO while for large time budgets, BOHB

outperforms all BO, Hyperband, and random search [20].

To accelerate HPO approaches, there are methods that

model learning curves [42, 27], use multi-fidelity meth-

ods for cheap approximations [24], use gradient-based

methods[13, 33, 35], or train on a subset of training data

and extrapolate the performance [26] to reduce the overall

search time. An alternative way to speed up HPO is via

“warm-start” techniques [41, 36, 12, 2, 47]. These tech-

niques exploit correlation between tasks to accelerate HPO.

Swersky et al. [41] learns to sample hyperparameters based

on multi-task Gaussian processes. Xue et al. [47] clusters

previously-evaluated tasks based on the accuracy on cer-

tain benchmark models. Both approaches, while exploiting

HPO knowledge from multiple tasks, incur a time overhead

as they need to evaluate the new task every time over a cer-

tain pool of configurations in order to speed up the search.

To avoid evaluating benchmark configurations, other ap-

proaches learn a function to map the trend in performance

of a task over the configuration space with some task-

based representation [2, 12, 30, 48, 10]. This function is

based on multi-task Gaussian processes [2, 48] or random

forests [12]. The task representations employed in these

methods are based on hand-crafted features such as meta

data (e.g., number of samples and labels in the dataset), or

first and second order statistics (e.g., PCA, skewness, kurto-

sis, etc.) [20]. Since these features are neither visual-based

nor learned jointly with the HPO module, they prove to be

inefficient for large-scale vision tasks (see Section 4).

8737

Hyperparameter Config (HC) 1

HC 2

HC 1

HC N

Predicted
Performance, !

HC Η

HC2

HC1

HyperSTAR

HC 2

HC 1

HC K

Predicted Performance

Rank 2

Rank Η

Rank 1

… …

…

…

(a) Offline Meta Learning Phase (b) Online Recommendation Phase

Hyperparameter
Configurations, #$

Train Dataset
Images Batch, ℬ$

…

ConvNet
Feature

Map
Similarity

Transformer

& &
'(

Visual
Encoder
)*+

Config
Encoder

Config 1-hot vector, ,

Performance Prediction
Network -.

C
o

n
c
a

te
n

a
ti
o

n Hyperparameter
ConfigurationsUnseen Dataset, /01*

Config Recommendation

HyperSTAR

Hyperparameter Config (HC) 2

Hyperparameter Config (HC)

234516

| learning rate | augmentation | layers |

7

ℎ*9

:

Figure 2. HyperSTAR Model Overview. (a) Offline Meta-Learning Phase. This phase jointly learns the functions for task represen-

tation and hyperparameter representation, and uses them as input to a performance predictor that estimates the performance of a CNN

given a dataset (task) and a hyperparameter configuration. (b) Online Recommendation Phase. In this phase, HyperSTAR predicts the

performance over the hyperparameter space for a new dataset and generates a task-aware ranking of the configurations.

Achille et al. [1] introduced task2vec, a visual-inspired

task representation but its computational cost makes it

ill-suited as conditional input for hyperparameter recom-

mendation. With respect to neural architectures [52],

Kokiopoulou et al. [28] suggests conditioning the architec-

ture search for natural language tasks over globally aver-

aged features obtained from raw language based data. How-

ever, being restricted to low dimensional language tasks

and without any dedicated performance based similarity

regularization, these methods are not directly applicable to

and effective on large scale vision tasks. For vision tasks,

Wong et al. and Kim et al. [44, 25] condition the search of

architectures and/or hyperparameters over deep visual fea-

tures globally averaged over all images. Unlike these meth-

ods where features are either not learned or are aggregated

via simple statistics (i.e., a global mean), HyperSTAR is the

first method that learns an end-to-end representation over a

joint space of hyperparameters and datasets. By doing so,

HyperSTAR learns features that are more actionable for rec-

ommending configurations and for task-aware warm-start of

HPO for large-scale vision datasets.

3. HyperSTAR

The goal of HyperSTAR is to recommend tailored hyper-

parameter configurations for an unseen dataset (task). To in-

troduce this task-awareness, HyperSTAR comprises of a su-

pervised performance predictor operating over a joint space

of real-world image classification datasets and hyperparam-

eter configurations. Given a dataset and a hyperparameter

configuration, our model learns to predict the performance

of the dataset for the given configuration in an offline meta-

learning phase. Once the model has learned this mapping,

we use HyperSTAR on an unseen dataset in an online rec-

ommendation phase to predict scores and rank the hyperpa-

rameter configurations. This ranking is beneficial to warm

start task-agnostic HPO approaches, as we demonstrate via

our formulation of task-aware Hyperband. Figure 2 pro-

vides a detailed illustration of HyperSTAR.

3.1. Offline Meta­Learning Phase

Performance Predictor. The objective of the performance

predictor is to estimate the accuracy of a hyperparameter

configuration given a task representation and an encoding

of the hyperparameters (e.g., learning rate, number of layers

to fine-tune, optimizer). Mathematically, the performance

predictor f is a function that regresses the performance v

of a deep-learning based image classifier given a dataset or

task D and a hyperparameter configuration encoding C.

Because deriving this function f analytically is challeng-

ing for real-world vision tasks, we instead learn it using a

deep network architecture fθ parameterized with weights

θ. Learning fθ requires a tensor-based representation of the

dataset D and hyperparameter configuration C. To learn the

representation of the task t ∈ R
d, we search for a function

t = gwt
(D) parameterized by weights wt. Similarly, we

learn the representation s ∈ R
d of a hyperparameter config-

uration encoded as one-hot vector c by searching for a func-

tion s = hws
(c) parameterized by the weights ws. Mathe-

matically, this is formulated as v = fθ (gwt
(D) , hws

(c)).
We learn the task representation t in an end-to-end man-

ner directly from raw training images of dataset D by us-

ing a convolutional neural network followed by a trans-

former layer inside gwt
(·). This enables the use of visual

information into the task representation t, leading to im-

proved generalization over unseen vision tasks and making

the method end-to-end differentiable. Jointly learning the

performance predictor and the representations in an end-

to-end fashion constitutes a departure from previous meta-

learning approaches that represent a task using hand-crafted

metadata [2] (e.g., total number of training samples, number

of classes, number of samples per class, etc.), performance-

8738

based features [47] or globally averaged features from a

frozen deep network [44]. This allows our performance

predictor fθ (·) to inform the feature extractors gwt
(·) and

hws
(·) during training about the most useful features for es-

timating the performance of an image classifier given a task

and a hyperparameter configuration.

Meta Dataset. To jointly learn the performance

predictor fθ (·), task representation gwt
(·), and hy-

perparameter embedding hws
(·) in a supervised man-

ner, we construct a meta dataset (i.e., a dataset

of datasets) T over the joint space of M datasets

and H hyperparameter configurations. We define

T = {(Di, cj , vij) | i ∈ {1, . . . ,M}, j ∈ {1, . . . , H}},
where vij is the target performance score (e.g., top-1 ac-

curacy) achieved for an image classifier using the hyperpa-

rameter configuration cj on a dataset Di = {(x
k
i , y

k
i) | k =

0, . . . , Ni} (each (xk
i , y

k
i) being an image-label pair in Di).

Performance Regression. We first find the optimal param-

eters for θ, wt, ws that minimize the difference between the

estimated performance of our performance predictor and the

ground-truth performance score using the loss function:

Lperf(wt, ws, θ) =
1

B

B∑

i=1

‖vij − fθ (gwt
(Di) , hws

(cj))‖
2

2
,

(1)

where B is the number of instances in a batch.

The raw ground truth performance scores vij across

datasets can have a large variance due to the diversity of

task difficulty. To alleviate the effect of this variance on

our predictor, we normalize the performance scores as,

vij ← (vij − µi)σ
−1

i , where µi and σi are the mean and

standard deviation over the performance scores of dataset

Di for all hyperparameter configurations, respectively.

Although formulating the objective function using a

ranking loss [5] seems more intuitive for recommending

hyperparameters, Yogatama et al. [48] showed that apply-

ing the above normalization over vij makes the regression-

based optimization in Eq. (1) equivalent to a rank-based op-

timization. A regression-based formulation has the advan-

tage of being more time-efficient than rank-based optimiza-

tion. The time complexity of learning a rank-based predic-

tor isO(MH2) while that of a regression-based predictor is

O(MH). Consequently, our regression-based performance

predictor can scale favorably to many more datasets.

Similarity-based inter-task regularization. To learn a

more meaningful task representation, we add a regularizer

that imposes that two tasks must have similar represen-

tations if they have similar hyperparameter-configuration

rankings. The goal of this regularizer, Lsim(wt), is to pe-

nalize our model when the similarity of two task represen-

tations differs from a pre-computed task similarity between

the two datasets. This regularizer is defined as

Lsim(wt) = ‖rij − d(gwt
(Di) , gwt

(Dj))‖
2

2
, (2)

where rij is a pre-computed similarity between the i-th and

j-th datasets, and d (gwt
(Di) , gwt

(Dj)) is the cosine sim-

ilarity between the two task representations gwt
(Di) and

gwt
(Dj). We pre-compute rij as AP@K [51] with k = 10.

Intuitively, rij is high when the top-k configurations of the

two datasets have a large number of entries in common.

Lsim(wt) thus helps gwt
(.) push an unseen dataset close to

a “similar” seen dataset in the manifold, thereby improving

hyperparameter recommendation for this new dataset.

Reducing intra-task representation variance. In order to

optimize Eq. (1), we leverage stochastic gradient descent

with mini-batch size B. Consequently, this imposes the con-

straint that a dataset representation ti computed from a

batch sampled from a dataset Di has to be representative

of that dataset. In other words, a dataset representation t
a
i

computed from a batch a sampled fromDi has to be similar

to a representation t
b
i computed from a batch b of the same

dataset. Therefore, our model has to ensure that the variance

among the task representations computed from any batch

of the same dataset has to be small. Inspired by domain

adaptation techniques [14, 43, 17], we devise an adversarial

training component with the goal of keeping the dataset rep-

resentations computed from batches (tli) close to the global

representation of the dataset (tGi). We compute the global

representation of the dataset as follows t
G
i = 1

L

∑L

l=1
t
l
i,

where the index l runs through up to last L sampled im-

age batches of a dataset (like a sliding window). We use

a discriminator dwd
(·) to ensure that the batch-wise dataset

representations tli are close to the global representation t
G
i .

To penalize deviations, we formulate the following loss:

Ladv(wt, wd) = E

[

log
(

dwd

(

t
G
i

))]

+E

[

log
(

1− dwd

(

t
l
i

))]

,

(3)

where E [·] is the expectation operator. We chose to use an

adversarial training component to ensure semantic consis-

tency between batch-wise representations tli and the global

representation t
G
i as suggested by Hoffman et al. [17].

Overall objective function. The overall task representation

problem is thus the following

min
wt,ws,θ

max
wd

Lperf(wt, ws, θ) + αLsim(wt) + βLadv(wt, wd)

(4)

where α and β are loss coefficients. We solve this problem

by alternating between optimizing feature extractors gwt
(·),

hws
(·) and discriminator dwd

(·) until convergence.

Implementation details of offline meta-learning phase.

Algorithm 1 shows the training process for the offline meta-

learning phase. The offline meta-learning phase requires

two loops. The outer-most for-loop (steps 3 - 12) samples a

meta-batch Cm for the m-th datasetDm containing hyperpa-

rameter configurations and their performances. The inner-

most for-loop (steps 6 - 11) samples image batches from

Dm to update the parameters of the predictor and simulta-

neously aggregate the global representation tm considering

8739

up to the L last image batches. In addition to leveraging

stochastic gradient descent as described above, sampling

image batches to represent a dataset, compared to a single-

point estimate [44], helps the dataset (task) to be modeled

as a richer distribution in the dataset-configuration space by

effectively acting as data augmentation.

3.2. Online Recommendation Phase

Once the performance predictor of our HyperSTAR

learns to effectively map a dataset-configuration pair to its

corresponding performance score in the offline meta learn-

ing phase, we can use it for online recommendation on

an unseen dataset Dnew as shown in Algorithm 2 and Fig-

ure 2b. HyperSTAR first extracts a task representation

tnew = gwt
(Dnew) for the new dataset and then along with a

batch of previously-seen hyperparameter configuration en-

codings, feeds it into the offline-trained performance pre-

dictor fθ(·) to predict a sequence of performance scores

corresponding to the sequence of configurations. Based on

these performance scores, we can rank the configurations to

prioritize which ones to evaluate.

Task-Aware HPO. This task-aware recommendation list

generated by HyperSTAR can be used to warm-start and

guide any of the existing HPO approaches. We prove this

by proposing a task-aware variant of Hyperband [29]. In

this variant of Hyperband, in each stage, we replace the

random configuration sampling by evaluating the top n con-

figurations based on the recommendation list suggested by

HyperSTAR. We experiment with a thresholded list of top

n configurations with Hyperband, but it can be hybridized

(without much effort) to either mix a certain ratio of random

configurations or sample configurations based on a proba-

bility defined over the ranked configuration list.

Implementation details of online phase. Algorithm 2

summarizes the online recommendation phase. The outer-

most for-loop (steps 2 - 9) iterates over all the possible H

configurations. For each configuration, the inner-most loop

(steps 4 - 7) samples B batches and predicts the perfor-

mance for each batch at step 6. At the end of this inner-most

loop, we average all the performance predictions and use

it as the performance estimate for the n-th configuration.

Lastly, the algorithm ranks all the configurations based on

their estimated performances and returns the ranking.

4. Experiments

This section presents a series of experiments designed

to evaluate the performance predictor, the generated recom-

mendation (see Sec. 4.1), and the end-to-end HPO perfor-

mance of HyperSTAR (see Sec. 4.3).

Datasets. We evaluate HyperSTAR on 10 publicly avail-

able large-scale image classification datasets: Book-

Cover30 [21], Caltech256 [15], DeepFashion [31], Food-

101 [4], MIT Indoor Scene Recognition [37], IP102 In-

Algorithm 1: Offline Meta-learning Phase

1 Input meta-dataset T , M datasets, hyperparameter batch size

Ohyper, image batch size Nimg, number of sampled image batches

per dataset Bimg, window size L

2 while Not converge do

3 for m=1 to M do

4 Initialize global task embedding t
G
m = 0

5 Sample hyperparameter batch Cm from T for dataset Dm

6 for i=1 to Bimg do

7 Sample an image batch Bi
m from Dm

8 Update θ, wt, ws by minimizing Eq. (4)

9 Compute t
G
m as mean of up to last L image batches

10 Update wd by maximizing Eq. (4);

11 end

12 end

13 end

Algorithm 2: Online Recommendation Phase

1 Input Unseen dataset Dnew, meta-dataset T , batch sampling

iterations B, number of hyperparameter configurations H

2 for n=1 to H do

3 Get the n-th hyperparameter configuration cn from T

4 for i=1 to B do

5 Randomly sample an image batch Bi
new from Dnew ;

6 vn,i = fθ
(

gwt

(

Bi
new

)

, hws
(cn)

)

7 end

8 vn = 1

B

∑B
i vn,i

9 end

10 Return ranked configurations c1, . . . , cH based on v1, . . . , vH

sects Pests [45], Oxford-IIIT Pets [34], Places365 [50],

SUN397 [46] and Describable Texture Dataset (DTD) [6].

Architectures. To ensure that our empirical study reflects

the performance of our method on state-of-the-art network

architectures, we choose SE-ResNeXt-50 [18], a powerful

and large architecture; and ShuffleNet-v2-x1 [32], a com-

pact and efficient architecture. For both networks, we oper-

ate in a transfer-learning setting [8] where we initialize the

weights of the network from a model pre-trained on Ima-

geNet [7] and fine-tune certain layers of the network while

minimizing the multi-class cross entropy loss. The hyper-

parameter space for SE-ResNeXt-50 consists of 40 config-

urations varying in learning rate, choice of optimizer, num-

ber of layers to fine tune, and data augmentation policy.

As ShuffleNet-v2-x1 takes less time to train, we explore

a larger search space of 108 configurations over the afore-

mentioned hyperparameter dimensions.

Meta-dataset for training the performance predictor.

To construct the meta-dataset over the joint dataset-

hyperparameter space, we train both SE-ResNeXt-50 and

ShuffleNet-v2-x1 for every configuration in their respective

hyperparameter space on each of the 10 datasets. This gen-

erates a set of 400 training samples for SE-ResNeXt-50 and

1,080 data samples for ShuffleNet-v2-x1. The meta-dataset

thus contains triplets holding a one-hot encoding represent-

8740

Table 1. AP@10 comparison for SE-ResNeXt-50 for 10 public image classification datasets across different methods.

Test Dataset BookCover30 Caltech256 DeepFashion Food101 MIT Indoor IP102 (Pests) Oxford-IIIT Pets Places365 SUN397 Textures (DTD) Average

B
as

el
in

es

Feurer et al. [12] 38.71 60.59 33.27 48.01 67.81 68.15 71.98 49.20 72.63 59.38 59.67

Feurer et al. [10] 37.13 49.55 28.67 49.60 43.27 50.71 54.50 54.78 54.78 51.97 42.49

Task-Agnostic 45.63 65.90 31.96 55.28 43.51 63.23 53.90 31.96 45.58 60.07 49.70

Meta-data 42.10 72.57 46.69 63.32 72.31 73.09 78.11 51.78 88.59 60.13 64.87

Global Mean 61.64 85.26 44.64 63.95 79.41 89.05 78.33 62.32 93.36 74.66 73.24

A
b
la

ti
o
n
s Batchwise Mean (BM) 68.16 82.34 62.39 70.98 72.51 84.94 81.43 88.05 93.74 82.59 78.71

BM + GAN 64.02 83.83 87.63 67.27 76.45 87.49 78.42 93.41 92.92 77.21 80.87

BM + Similarity 62.60 80.97 82.39 67.31 78.79 83.64 79.52 90.37 94.47 81.63 80.17

BM + Similarity + GAN 68.27 86.72 91.51 68.20 77.97 87.52 79.64 91.72 91.85 81.46 82.49

Table 2. AP@10 comparison for ShuffleNet-v2-x1 for 10 public image classification datasets across different methods.

Test Dataset BookCover30 Caltech256 DeepFashion Food101 MIT Indoor IP102 (Pests) Oxford-IIIT Pets Places365 SUN397 Textures (DTD) Average

B
as

el
in

es

Feurer et al. [12] 14.30 3.41 6.75 12.57 9.11 14.21 2.11 25.81 18.45 59.38 11.72

Feurer et al. [10] 21.74 10.95 0.00 11.81 25.74 0.0 11.95 27.87 27.87 0.0 15.25

Task-Agnostic Baseline 0.00 2.11 15.74 44.69 3.11 26.11 31.24 0.00 0.00 18.65 14.16

Meta-data 33.27 15.35 31.97 33.44 35.68 54.73 25.46 40.48 37.89 34.88 34.32

Global Mean 35.30 16.45 17.70 47.41 34.87 49.87 24.98 58.28 43.79 40.71 36.94

A
b
la

ti
o
n
s Batchwise Mean (BM) 76.81 21.69 33.82 80.98 39.56 56.30 44.86 69.88 50.49 46.70 52.11

BM + GAN 69.71 24.29 34.34 84.88 46.93 54.96 53.84 62.89 43.98 51.43 52.72

BM + Similarity 80.23 20.51 35.28 87.10 38.21 57.73 54.69 71.78 44.78 46.52 53.68

BM + Similarity + GAN 76.92 21.51 40.10 84.60 47.74 55.34 47.20 75.25 46.09 46.56 54.13

ing the hyperparameter configuration, training images of

the dataset and corresponding Top-1 accuracy (to be used

as performance score that HyperSTAR estimates). We nor-

malize these Top-1 accuracies using the mean and standard

deviation computed for each dataset separately over the ac-

curacy scores across the configuration space (Section 3.1).

Evaluation metric. We use Average Precision @ 10

(AP@10) [51] metric (as described in Section 3.1) to assess

the ranking of configurations that HyperSTAR produces.

This metric reflects the quantity and relative ranking of the

relevant configurations predicted by HyperSTAR. We first

build a ground-truth hyperparameter recommendation list

based on decreasing order of actual Top-1 accuracies. We

then compute AP@10 by comparing this list with the pre-

dicted recommendation list generated based on the decreas-

ing order of the predicted accuracies from HyperSTAR.

4.1. Performance Predictions and Rankings

We present a quantitative study comparing the task repre-

sentation, regularization functions and the performance pre-

dictor introduced by HyperSTAR with existing methods.

Task Representation Comparison. For this comparison,

we use meta-data based task representation as the first base-

line. The representation is a subset of statistics used in pre-

vious methods [12, 2] which are applicable to our vision

datasets (such as number of images, classes and images per

class in the dataset). As the second baseline, we consider

global mean features based task representation. The global

mean is computed by taking an average of the deep visual

features obtained from the penultimate layer of ResNet-50

pretrained on ImageNet [44] over all training images of a

dataset. In comparison, our task representation is a batch-

wise mean (BM) taken as mean over end-to-end learned fea-

tures over a batch of Nimg = 64 training images. We take

Bimg = 10 of these batches and take an average to obtain

the task representation. For training, the size of the hyperpa-

rameter batch is Ohyper = 10. For each setting, we train our

performance predictor and compute AP@10 averaged over

10 trials. We can observe from Tables 1 and 2 that our end-

to-end learned task representation (BM) outperforms meta-

data-based and global-mean-based task representations by

17.62% and 9.25%, respectively, for SE-ResNeXt-50. The

performance gains are similar for ShuffleNet-v2-x1 (see Ta-

ble 2). This suggests that learning end-to-end visually in-

spired task representation helps HyperSTAR to recommend

better task-aware configurations. It further suggests that

representing the dataset as a distribution over a large num-

ber of randomly sampled batches is better than representing

it as a point estimate using global mean.

Regularization Ablation Study. We perform an inter-

nal ablation study comparing AP@10 achieved when using

batchwise mean (BM) in HyperSTAR with and without im-

posing similarity and adversarial based regularization. We

can observe from Tables 1 and 2 that imposing the regular-

izations improves the AP@10 for 6 out of 10 datasets for

SE-ResNeXt-50 and 9 out of 10 dataset for ShuffleNet-v2-

x1. This suggests that, on expectation, imposing regulariza-

tion allows the task representations to learn meaningful fea-

tures over the joint dataset-configuration space. Although

there is a time cost associated with introducing regulariza-

tions, they provide an added dimension for the user to ex-

plore and further improve the configuration recommenda-

tion compared to the plain batch-wise mean setting.

Performance Predictor Comparison. We compare Hyper-

STAR and existing meta-learning based warm-starting HPO

methods. We first compare HyperSTAR with Feurer et al.

[12] that uses random forest regression over a joint vector of

meta-data and one-hot encoding of hyperparameters to pre-

dict the corresponding Top-1 accuracy and use that to build

a recommendation list of configurations. We also compare

HyperSTAR with Feurer et al. [10] that finds the most sim-

8741

Figure 3. End-to-End performance comparison of task-aware HyperSTAR based Hyperband with existing methods for SE-ResNeXt-50.

HyperSTAR outperforms other methods when performing on low epoch budgets (100, 250, 450).

Figure 4. End-to-End performance comparison of task-aware HyperSTAR based Hyperband with existing methods for ShuffleNet-v2-x1.

HyperSTAR outperforms other methods when performing on low epoch budgets (100, 250, 450).

ilar training dataset for a given test dataset with respect to

meta-data features and use the ground truth list of recom-

mended configurations for the training dataset as the pre-

diction for test dataset. We further set up a task-agnostic

baseline to compare the effectiveness of our task-aware rec-

ommendations. For this baseline, we disregard the charac-

teristics of the test dataset and build a predicted list of rec-

ommended configurations by sorting the configurations in

decreasing order of their average Top-1 accuracy over the

training datasets. From Table 1 and 2, we can observe

that HyperSTAR surpasses each of the baselines with av-

erage AP@10 margin of at least 25% for SE-ResNeXt-50

and 37% for ShuffleNet-v2-x1. We also observe from the

Tables that similarity based approaches (task-agnostic and

Feurer et al. [10]) have a higher variance in performance

across datasets compared to task-representation-based ap-

proaches (HyperSTAR and Feurer et al. [12]).

4.2. Warm­Starting with Recommendations

We test the configurations recommended by HyperSTAR

and other baseline methods by evaluating their ranking or-

der. We plot a curve showing the best Top-1 accuracy

achieved after k hyperparameter configurations for k =
1 . . . H as shown in Figure 5a. We can observe that us-

ing the recommendation from HyperSTAR achieves the

same performance in just 50% of evaluated configurations

as needed by baseline recommendations. This suggests

that compared to other baseline methods and task repre-

sentations, raw-pixel based end-to-end learned task repre-

sentations of HyperSTAR are more informative for prior-

itizing hyperparameter configurations. HyperSTAR takes

422ms on an Nvidia 1080Ti to generate configuration rec-

ommendations which is negligible compared to multiple

GPU hours required to evaluate even a single configuration.

4.3. Task­Aware Hyperband

We warm-start Hyperband (HB) [29] using the task-

aware hyperparameter recommendation from HyperSTAR

and compare it with the vanilla Hyperband [29] and

BOHB [9]. We design the experiment to demonstrate a

common scenario where the time available to search for the

optimal hyperparameters for an unseen dataset is limited.

8742

SE-ResNeXt-50 ShuffleNet-v2-x1

(a)

(b)

Figure 5. (a) Comparison of evaluating configurations recom-

mended by HyperSTAR with baseline methods in ranked order.

Compared to baselines, HyperSTAR achieves the best perfor-

mance by evaluating 50% less configurations. (b) Comparison

of warm-starting Hyperband (HB) with HyperSTAR vs. baseline

approaches across different epoch budgets. HyperSTAR achieves

optimal accuracy in 25% of the budget required by other methods.

It also achieves 1.5% higher best Top-1 accuracy on average for

the smallest budget setting on both network architectures.

We run all the methods for different amounts of total budget.

The budget is defined in terms of epochs to keep the evalua-

tion time consistent across different hyperparameter config-

urations, datasets and architectures. The maximum number

of epochs for any given configuration is R = 100. We con-

sider a budget of 1600 epochs (η = 3, large-budget setting)

and smaller budgets of 450, 200 and 100 epochs (η = 2,

low-budget settings). Figs. 3 and 4 show the best Top-

1 accuracy achieved by the different methods for differ-

ent budgets for all 10 test datasets for SE-ResNeXt-50 and

Shufflent-v2-x1, respectively. Fig. 5b further shows the av-

erage over all the test datasets for the two network archi-

tectures. We observe that HyperSTAR outperforms vanilla

HB and BOHB in the low-budget settings for all datasets

achieving around 1.5% higher best Top-1 accuracy on aver-

age for the smallest budget setting on both network archi-

tectures. In fact, HyperSTAR achieves the optimal accuracy

in just 25% of the budget required by the other two meth-

ods. This happens because the initial set of hyperparameters

suggested by both vanilla HB and BOHB do not follow any

prior and are chosen randomly, i.e., they are task agnostic.

The difference in the Top-1 accuracy achieved by all

three methods gradually diminish with increasing time bud-

get and eventually becomes negligible for the largest bud-

get setting. The accuracy is also at par with the best Top-

1 accuracy achievable for the given hyperparameter space.

This happens for vanilla HB and BOHB because over time,

they explore the hyperparameter space sufficiently enough

to be able to discover the best possible configuration. Al-

though HyperSTAR-based Hyperband has been designed to

improve HPO efficiency for low-budget setting, being able

to achieve the best possible performance suggests that it is

also sound for large-budget setting. Given sufficient budget,

our method can achieve at par (if not better) performance

compared to other HPO methods. Our plots also show

BOHB being comparable to vanilla HB for low-budget set-

ting while being better than vanilla HB in the large-budget

setting. This is because of the Bayesian sampling prior of

BOHB that gets better than random sampling over time,

thus helping BOHB outperform vanilla HB.

We also compare our task-aware Hyperband with Tr-

AutoML [47]. For a fair comparison, we considered the

time Tr-AutoML spends to group the 9 training datasets as

part of offline training and exclude it from the time com-

parison. We randomly choose 10 configurations to group

the datasets and evaluate on the test dataset for finding the

most similar training dataset. We consider the more time

efficient scenario of Tr-AutoML where we do not run Hy-

perband and compute the Top-1 accuracy achieved over the

unseen dataset using the best configuration for the most sim-

ilar training dataset. As shown in Figures 3, 4 and 5b, since

the total evaluation time comprises of running on the bench-

mark 10 configurations and then finally on the best found

configuration, the Top-1 accuracy is reported as achieved

after 1100 epochs. From the figures, we can observe that,

on expectation, our task-aware HB is able to achieve the

same performance in as little as 10 times less budget. This

reinforces that learning a dataset embedding from raw pix-

els significantly reduces the time required to predict the op-

timal hyperparameters compared to Tr-AutoML.

5. Conclusion

We present HyperSTAR, the first efficient task-aware

warm-start algorithm for hyperparameter optimization

(HPO) for vision datasets. It operates by learning an end-to-

end task representation and a performance predictor directly

over raw images to produce a ranking of hyperparameter

configurations. This ranking is useful to accelerate HPO al-

gorithms such as Hyperband. Our experiments on 10 real-

world image classification datasets show that HyperSTAR

achieves the optimal performance in half the number of

evaluated hyperparameter configurations compared to state-

of-the-art warm-start methods. Our experiments also show

that HypterSTAR combined with Hyperband achieves an

optimal performance in 25% of the budget of other HB vari-

ants. HyperSTAR is especially helpful in performing HPO

without requiring large computational time budgets.

6. Acknowledgements

Special thanks to Microsoft Custom Vision team for their

valuable feedback and support.

8743

References

[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash

Ravichandran, Subhransu Maji, Charless C Fowlkes, Stefano

Soatto, and Pietro Perona. Task2vec: Task embedding for

meta-learning. In Proc. of the IEEE International Confer-

ence on Computer Vision, pages 6430–6439, 2019. 3

[2] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele

Sebag. Collaborative hyperparameter tuning. In Proc. of the

International Conference on Machine Learning, pages 199–

207, 2013. 1, 2, 3, 6

[3] James Bergstra and Yoshua Bengio. Random search for

hyper-parameter optimization. Journal of Machine Learn-

ing Research, 13(Feb):281–305, 2012. 1, 2

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101 – mining discriminative components with random

forests. In Proc. of the European Conference on Computer

Vision, 2014. 5

[5] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and

Hang Li. Ranking measures and loss functions in learning

to rank. In Proc. of the Advances in Neural Information Pro-

cessing Systems, pages 315–323, 2009. 4

[6] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.

Vedaldi. Describing textures in the wild. In Proc. of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2014. 5

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In Proc. of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 248–255, 2009. 5

[8] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,

Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep

convolutional activation feature for generic visual recogni-

tion. In Proc. of the International Conference on Machine

Learning, pages 647–655, 2014. 1, 5

[9] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Ro-

bust and efficient hyperparameter optimization at scale. In

Proc. of the International Conference on Machine Learning,

2018. 2, 7

[10] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost

Springenberg, Manuel Blum, and Frank Hutter. Efficient

and robust automated machine learning. In Proc. of the

Advances in Neural Information Processing Systems, pages

2962–2970, 2015. 1, 2, 6, 7

[11] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost

Springenberg, Manuel Blum, and Frank Hutter. Efficient

and robust automated machine learning. In C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,

Proc. of the Advances in Neural Information Processing Sys-

tems, pages 2962–2970. Curran Associates, Inc., 2015. 2

[12] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter.

Initializing bayesian hyperparameter optimization via meta-

learning. In Proc. of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015. 1, 2, 6, 7

[13] Luca Franceschi, Michele Donini, Paolo Frasconi, and Mas-

similiano Pontil. Forward and reverse gradient-based hyper-

parameter optimization. In Proc. of the International Con-

ference on Machine Learning, pages 1165–1173. JMLR. org,

2017. 2

[14] Yaroslav Ganin and Victor Lempitsky. Unsupervised

domain adaptation by backpropagation. arXiv preprint

arXiv:1409.7495, 2014. 4

[15] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256

object category dataset. 2007. 5

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc. of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 770–778, 2016. 1

[17] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Dar-

rell. Cycada: Cycle-consistent adversarial domain adapta-

tion. In Proc. of the 35th International Conference on Ma-

chine Learning, 2018. 4

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7132–7141, 2018. 5

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4700–4708, 2017. 1

[20] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, ed-

itors. Automatic Machine Learning: Methods, Systems,

Challenges. Springer, 2018. In press, available at

http://automl.org/book. 2

[21] Brian Kenji Iwana, Syed Tahseen Raza Rizvi, Sheraz

Ahmed, Andreas Dengel, and Seiichi Uchida. Judging a

book by its cover. arXiv preprint arXiv:1610.09204, 2016. 5

[22] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best

arm identification and hyperparameter optimization. In Proc.

of the Artificial Intelligence and Statistics, pages 240–248,

2016. 2

[23] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An

efficient neural architecture search system. In Proc. of the

ACM International Conference on Knowledge Discovery &

Data Mining, pages 1946–1956, 2019. 2

[24] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider,

and Barnabas Poczos. Multi-fidelity bayesian optimisation

with continuous approximations. In Proc. of the 34th In-

ternational Conference on Machine Learning, pages 1799–

1808. JMLR. org, 2017. 1, 2

[25] Jungtaek Kim, Saehoon Kim, and Seungjin Choi. Learning

to warm-start bayesian hyperparameter optimization. arXiv

preprint arXiv:1710.06219, 2017. 2, 3

[26] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,

and Frank Hutter. Fast bayesian optimization of machine

learning hyperparameters on large datasets. In Proc. of the

Artificial Intelligence and Statistics, pages 528–536, 2017. 2

[27] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and

Frank Hutter. Learning curve prediction with bayesian neural

networks. ICLR, 2016. 1, 2

[28] Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Ges-

mundo, Gabor Bartok, and Jesse Berent. Fast task-aware

architecture inference. arXiv preprint arXiv:1902.05781,

2019. 3

8744

[29] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-

tamizadeh, and Ameet Talwalkar. Hyperband: A novel

bandit-based approach to hyperparameter optimization. J.

Mach. Learn. Res., 18(1):6765–6816, Jan. 2017. 1, 2, 5, 7

[30] Marius Lindauer and Frank Hutter. Warmstarting of model-

based algorithm configuration. In Proc. of the Thirty-Second

AAAI Conference on Artificial Intelligence, 2018. 2

[31] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition and

retrieval with rich annotations. In Proc. of IEEE Conference

on Computer Vision and Pattern Recognition, June 2016. 5

[32] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proc. of the European Conference on Com-

puter Vision, pages 116–131, 2018. 5

[33] Dougal Maclaurin, David Duvenaud, and Ryan Adams.

Gradient-based hyperparameter optimization through re-

versible learning. In Proc. of the International Conference

on Machine Learning, pages 2113–2122, 2015. 2

[34] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and

C. V. Jawahar. Cats and dogs. In Proc. of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2012.

5

[35] Fabian Pedregosa. Hyperparameter optimization with ap-

proximate gradient. In Proc. of the International Conference

on Machine Learning, 2016. 2

[36] Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and

Cédric Archambeau. Scalable hyperparameter transfer learn-

ing. In Proc. of the Advances in Neural Information Process-

ing Systems, pages 6845–6855, 2018. 1, 2

[37] Ariadna Quattoni and Antonio Torralba. Recognizing indoor

scenes. In Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 413–420, 2009. 5

[38] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 1

[39] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Prac-

tical bayesian optimization of machine learning algorithms.

In Proc. of the Advances in Neural Information Processing

Systems, pages 2951–2959, 2012. 1, 2

[40] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Na-

dathur Satish, Narayanan Sundaram, Mostofa Patwary, Mr

Prabhat, and Ryan Adams. Scalable bayesian optimization

using deep neural networks. In Proc. of the International

Conference on Machine Learning, pages 2171–2180, 2015.

2

[41] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-

task bayesian optimization. In Proc. of the Advances in

Neural Information Processing Systems, pages 2004–2012,

2013. 1, 2

[42] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams.

Freeze-thaw bayesian optimization. arXiv preprint

arXiv:1406.3896, 2014. 2

[43] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. In Proc. of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 7167–7176, 2017. 4

[44] Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Ges-

mundo. Transfer learning with neural automl. In Proc. of the

Advances in Neural Information Processing Systems, pages

8356–8365, 2018. 2, 3, 4, 5, 6

[45] Xiaoping Wu, Chi Zhan, Yu-Kun Lai, Ming-Ming Cheng,

and Jufeng Yang. Ip102: A large-scale benchmark dataset

for insect pest recognition. In Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8787–

8796, 2019. 5

[46] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,

and Antonio Torralba. Sun database: Large-scale scene

recognition from abbey to zoo. In Proc. of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3485–3492, 2010. 5

[47] Chao Xue, Junchi Yan, Rong Yan, Stephen M Chu, Yong-

gang Hu, and Yonghua Lin. Transferable automl by model

sharing over grouped datasets. In Proc. of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

9002–9011, 2019. 1, 2, 4, 8

[48] Dani Yogatama and Gideon Mann. Efficient transfer learning

method for automatic hyperparameter tuning. In Proc. of the

Artificial intelligence and statistics, pages 1077–1085, 2014.

1, 2, 4

[49] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-

son. How transferable are features in deep neural networks?

In Proc. of the Advances in Neural Information Processing

Systems, pages 3320–3328, 2014. 1

[50] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 2017. 5

[51] Mu Zhu. Recall, precision and average precision. 2004. 4, 6

[52] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 3

8745

