
BLT: Balancing Long-Tailed Datasets with

Adversarially-Perturbed Images

Jedrzej Kozerawski1, Victor Fragoso2, Nikolaos Karianakis2, Gaurav Mittal2,
Matthew Turk1,3, and Mei Chen2

UC Santa Barbara1 Microsoft2 Toyota Technological Institute at Chicago3

jkozerawski@ucsb.edu {victor.fragoso, nikolaos.karianakis,

gaurav.mittal, mei.chen}@microsoft.com mturk@ttic.edu

Abstract. Real visual-world datasets tend to have few classes with large
numbers of samples (i.e., head classes) and many others with smaller
numbers of samples (i.e., tail classes). Unfortunately, this imbalance en-
ables a visual recognition system to perform well on head classes but
poorly on tail classes. To alleviate this imbalance, we present BLT, a
novel data augmentation technique that generates extra training samples
for tail classes to improve the generalization performance of a classifier.
Unlike prior long-tail approaches that rely on generative models (e.g.,
GANs or VQ-VAEs) to augment a dataset, BLT uses a gradient-ascent-
based image generation algorithm that requires significantly less train-
ing time and computational resources. BLT avoids the use of dedicated
generative networks, which adds significant computational overhead and
require elaborate training procedures. Our experiments on natural and
synthetic long-tailed datasets and across different network architectures
demonstrate that BLT consistently improves the average classification
performance of tail classes by 11% w.r.t. the common approach that bal-
ances the dataset by oversampling tail-class images. BLT maintains the
accuracy on head classes while improving the performance on tail classes.

1 Introduction

Visual recognition systems deliver impressive performance thanks to the vast
publicly available amount of data and convolutional neural networks (CNN) [1–
6]. Despite these advancements, the majority of the state-of-the-art visual recog-
nition systems learn from artificially balanced large-scale datasets. These datasets
are not representative of the data distribution in most real-world applications [7–
12]. The statistics of the real visual world follow a long-tailed distribution [13–17].
These distributions have a handful of classes with a large number of training in-
stances (head classes) and many classes with only a few training samples (tail
classes); Fig. 1(a) illustrates a long-tailed dataset.

The main motivation for visual recognition is to understand and learn from
the real visual world [14]. While the state of the art can challenge human per-
formance on academic datasets, it is missing an efficient mechanism for learning
tail classes. As Van Horn and Perona found [14], training models using long-
tailed datasets often leads to unsatisfying tail performance. This is because the

Code available at: http://www.github.com/JKozerawski/BLT

http://www.github.com/JKozerawski/BLT

2 J. Kozerawski et al.

#
 T

ra
in

in
g

 S
a
m

p
le

s

Classes

Confusing

Class

Sampler
H
e
a
d

C
a
t

L
e
m

u
r

Tail

Confusion

Matrix from

Validation
Gradient-

Ascent

Image

Generator

Batch

A
u
g

m
e
n
te

d
 B

a
tc

h
+

(a) Long-tailed datasets (b) BLT: Data Augmentation Pipeline

Tail-Class

Image

Sampler

Fig. 1. (a) Real-world datasets are often naturally imbalanced as they present a long-
tail distribution over classes. Some classes (e.g., cats) have an abundant number of
training instances (head classes) while others (e.g., lemurs) have fewer training ex-
amples (tail classes). (b) BLT augments a training batch by generating images from
existing tail class images to compensate for the imbalance in a long-tailed dataset.
Unlike existing methods that rely on generative networks such as GANs or VAEs,
BLT uses an efficient gradient ascent-based algorithm to generate hard examples that
are tailored for tail classes. We show that BLT is flexible across different architectures
and improves the performance of tail classes without sacrificing that of the head classes.

imbalance in real-world datasets imposes a bias that enables a visual recognition
system to perform well on head classes but often poorly on tail classes.

To alleviate the bias imposed from a long-tailed dataset, learned classifiers
need to generalize for tail classes while simultaneously maintaining a good perfor-
mance on head classes. Recent efforts that aim to learn from long-tailed datasets
modify the training loss functions [18–22], over- or under-sample a dataset to
balance it [23,24], or hallucinate or generate additional training instances (e.g.,
images or features) [25]. Despite the progress of these efforts, the performance of
visual recognition systems still falls short when trained using long-tailed datasets.
There are two reasons that make these systems struggle on these long-tailed
datasets. First, the information from the gradients of tail-class samples gets
diminished given the prevalence of the head-class instances in the mini-batch.
Second, more frequent sampling of instances from the tail classes reduces their
training error but does not help the classifier to generalize.

Recent advances on generative approaches (e.g., GANs [26, 27] and autoen-
coders [28]) enable the development of data augmentation techniques that make
the generation of additional training samples for tail classes on the fly useful to
address dataset imbalance. Although these generative approaches can hallucinate
impressively realistic imagery, they incur adaptations that are computationally
expensive. Specifically, adding these generative approaches into a per-batch data
augmentation policy requires training an additional neural network and adapt-
ing its sophisticated training procedures. This adds significant overhead in terms
of training time, computational complexity, and use of computational resources
on top of training the CNN-based image classifier.

To circumvent the cumbersome requirements of adopting a generative ap-
proach in long-tail recognition, we propose an efficient solution for Balancing
Long-Tailed datasets (BLT) which, at its core, embraces gradient ascent-based
adversarial image hallucination [29–31]. This approach removes the requirement
of using an additional network to generate images for tail classes (e.g., GANs

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 3

or autoencoders). As a result, BLT waives the need for extensive training pro-
cedures for the generator, thus keeping the computational complexity and re-
sources low. Instead of perturbing images to purely confuse a CNN-based image
classifier, as it is done for increasing robustness of a CNN [32–34], BLT perturbs
tail-class images in a batch to make them hard examples, adds them to the
batch, and proceeds with the regular training procedure. BLT generates hard
examples by computing image perturbations that make the classifier confuse an
image from a tail class with a confusing class based on the confusion matrix.
Fig. 1(b) shows an overview of our proposed data augmentation technique.

Our experiments on publicly available real and synthetic long-tail image-
classification datasets show that BLT consistently increases the average classifi-
cation accuracy of tail classes across different network architectures while main-
taining the performance on head classes. Our experiments show that BLT in-
creases the classification performance on tail classes by 11% w.r.t. the common
approach of oversampling tail-class images to balance a long-tailed dataset.

The contributions of this work are the following:

1. BLT, a data augmentation technique that uses gradient ascent-based adver-
sarial image generation to compensate the imbalance in a long-tailed dataset;

2. A quantitative analysis to demonstrate that BLT improves the generalization
of a classifier on tail classes while maintaining its overall performance; and

3. An extensive evaluation on synthetically and organically long-tailed datasets
to validate the flexibility of BLT on different network architectures.

2 Related Work

The main challenge of learning models from long-tailed datasets involves learning
parameters that generalize well from few training instances while maintaining
the accuracy of head classes. Many of the existing methods that address the
problem of learning from a long-tailed dataset modify the training loss, bal-
ance the dataset via sampling techniques, or hallucinate data. Since BLT uses
techniques designed to address classification robustness, this section also covers
adversarial image perturbations, and image and feature hallucinations.

2.1 Learning from Long-Tailed Datasets

The simplest techniques that deal with long-tailed datasets use random sampling
to artificially create a more balanced training set [23]. The two most common
techniques are oversampling and undersampling. Oversampling picks training
instances from tail classes more often. On the other hand, undersampling selects
instances from head classes less frequently. In practice, oversampling tail classes
tends to alleviate the bias from long-tailed datasets. Liu et al. [24] proposed
an approach that exploits data balancing and a modular architecture to solve
learning from an long-tailed dataset but also in an open-set scenario [35].

A different set of approaches adapt the training loss function to learn from
long-tailed datasets. Lin et al. [20] proposed an object detection loss designed to
penalize more the misclassified ones. Song et al. [21] presented a loss that forces
a network to learn a feature embedding that is useful for few-shot learning.

4 J. Kozerawski et al.

Cui et al. [18] presented a loss designed to better re-weight by means of the
effective number of samples. Dong et al. [19] presented class rectification loss
which formulates a scheme for batch incremental hard sample mining of minority
attribute classes. Zhang et al. [22] developed a loss with the goal to reduce overall
intra-class variations while enlarging inter-class differences. Zhong et al. [36]
used different loss functions for head and tail class data while simultaneously
introducing a noise resistant loss. Huang et al. [37] presented a quintuplet loss
that forces a network to have both inter-cluster and inter-class margins.

The closest group of approaches to BLT hallucinate new data for tail classes
to compensate for the imbalance in the dataset. Yin et al. [25] presented a
face-recognition approach that generates new instances in feature space for tail
classes. Their approach used an encoder-decoder architecture to produced novel
features. Wang et al. [16] introduced MetaModelNet, a network that can hal-
lucinate parameters given some knowledge from head classes. While these ap-
proaches alleviate the imbalance in a long-tailed dataset, they require training
additional networks besides the CNN-based classifier.
2.2 Generating Novel Data for Few-shot Learning

The methods that leverage image generation techniques the most are those that
tackle the one- and few-shot learning problems [38–41]. Peng et al. [42] cre-
ated a method that used a generator-discriminator network that adversarially
learned to generate data augmentations. Their method aimed to generate hard
examples in an on-line fashion. Hoffman et al. [43] presented an approach that
hallucinates features obtained by a depth prediction network for improving ob-
ject detection. Zhang et al. [44] introduced a one-shot learning approach that
hallucinated foreground objects on different backgrounds by leveraging saliency
maps. Hariharan and Girshick [45] presented a method that used visual analogies
to generate new samples in a feature space for few-shot categories. Gidiaris and
Komodakis [46] generated weights for novel classes based on attention. Pahde et
al. [47] used StackGAN to generate images based on textual image descriptions
for few-shot learning. Wang et al. [48] hallucinated temporal features for action
recognition from few images. Wang et al. [49] hallucinated examples using GANs
trained in an end-to-end fashion combined with a classifier for few-shot classifi-
cation. Chen et al. [50] presented a network that learns how to deform training
images for more effective one-shot learning. Although these networks did not
generate realistic images, Chen and colleagues demonstrated that they were still
beneficial for one-shot learning. While many of these approaches can generate
realistic imagery, they unfortunately lack adoption because they require a sig-
nificant amount of effort to make them work as desired. Nevertheless, inspired
by Chen et al. [50], we argue that images do not need to look realistic in order
to compensate the lack of data of tail classes. Given this argument, we focus on
efficient image generation via adversarial perturbations.

2.3 Adversarially-Perturbed Images

The goal of adversarial images is to fool CNNs [30,32,33,51] or increase the ro-
bustness of a CNN-based classifier [52–56]. While some techniques use GANs [51]

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 5

for generating adversarial images, there exist others that construct adversar-
ial images by means of gradient ascent [30] or by solving simple optimization
problems [32, 33]. The benefit of using adversarially-perturbed images as hard
examples was shown by Rozsa et al. [57]. Because we are interested in gen-
erating images in an efficient manner, we focus on the gradient ascent-based
method of Nguyen et al. [30]. This method computes the gradient of the pos-
terior probability for a specific class with respect to an input image using back
propagation [58]. Then, the method uses these gradients to compute an additive
perturbation yielding a new image. While these methods have been useful to
show weaknesses and increase robustness of many visual recognition systems,
there has not been any approach exploiting these adversarial examples to learn
from a long-tailed dataset.

Unlike many methods described in Sec. 2.2, BLT does not require dedicated
architectures for image generations (e.g., GANs or VAEs) and complex training
procedures which can take days to train [59]. Instead, BLT uses the underly-
ing trained CNN-based model combined with a gradient ascent method [30] to
generate adversarial examples from tail-class images that are added to a batch.

3 BLT: An Efficient Data Augmentation Technique for

Balancing Long-Tailed Datasets

The main goal of BLT is to augment a batch by generating new images from
existing ones in order to compensate for the lack of training data in tail classes.
With the constraint of not increasing the computational overhead considerably,
we investigate the use of adversarial image perturbations [29–31] to generate
novel images. Although these techniques create noise-induced imagery, we show
that they are effective in compensating the imbalance in a long-tailed dataset and
efficient to generate. We first review how to generate new images by perturbing
existing ones via the gradient ascent technique [29–31].

3.1 Generating Images with Gradient Ascent-based Techniques

Generating an image via gradient ascent [29–31] requires evolving an image by
applying a sequence of additive image perturbations. We review this technique
assuming that we aim to confuse a classifier. Confusing a classifier requires max-
imizing the posterior probability or logit of a non-true class given an input image
I. Mathematically, this confusion can be posed as follows: I⋆ = argmaxI Sc(I),
where Sc(I) is the score (e.g., logit) of class c given I.

To confuse a classifier, the goal is to maximize the score Sc(I) for a non-true
class c. To generate image I⋆, the technique first computes the gradient of the
scoring function ∇ISc(I) corresponding to a non-true class c w.r.t. to an input
image I using backpropagation. Then, the technique adds a scaled gradient to
the input image I, i.e., I ← I + δ∇ISc(I), to produce a new image I. This
technique repeats this process until the score Sc(I) for a non-true class is large
enough to confuse a classifier. Unlike generative approaches (e.g., GANs or VQ-
VAEs) that require an additional architecture to generate images (e.g., encoder-
decoder networks), specialized losses, and sophisticated training procedures, this

6 J. Kozerawski et al.

…
…

Cheetah

Cat

Class ScoreI<latexit sha1_base64="nRAJNhMEYHCrj/BVl5Oh8TzR1B0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi95asB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS475frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHnv2MzQ==</latexit><latexit sha1_base64="nRAJNhMEYHCrj/BVl5Oh8TzR1B0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi95asB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS475frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHnv2MzQ==</latexit><latexit sha1_base64="nRAJNhMEYHCrj/BVl5Oh8TzR1B0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi95asB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS475frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHnv2MzQ==</latexit>Input Image

Sc(I)
<latexit sha1_base64="x4QfgUmP4rPaqAYE/RLzybsWrbE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquCHosetFbRfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pts9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrmt5+o0kyKBzOJqR/hoWAhI9hYqXXfJ9Xb03654tbcDGiZeDmpQI5Gv/zVG0iSRFQYwrHWXc+NjZ9iZRjhdFrqJZrGmIzxkHYtFTii2k+za6foxCoDFEplSxiUqb8nUhxpPYkC2xlhM9KL3kz8z+smJrz0UybixFBB5ovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C2+vExaZzXPrXl355X6VR5HEY7gGKrgwQXU4QYa0AQCj/AMr/DmSOfFeXc+5q0FJ585hD9wPn8AeyeOZQ==</latexit><latexit sha1_base64="x4QfgUmP4rPaqAYE/RLzybsWrbE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquCHosetFbRfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pts9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrmt5+o0kyKBzOJqR/hoWAhI9hYqXXfJ9Xb03654tbcDGiZeDmpQI5Gv/zVG0iSRFQYwrHWXc+NjZ9iZRjhdFrqJZrGmIzxkHYtFTii2k+za6foxCoDFEplSxiUqb8nUhxpPYkC2xlhM9KL3kz8z+smJrz0UybixFBB5ovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C2+vExaZzXPrXl355X6VR5HEY7gGKrgwQXU4QYa0AQCj/AMr/DmSOfFeXc+5q0FJ585hD9wPn8AeyeOZQ==</latexit><latexit sha1_base64="x4QfgUmP4rPaqAYE/RLzybsWrbE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquCHosetFbRfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pts9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrmt5+o0kyKBzOJqR/hoWAhI9hYqXXfJ9Xb03654tbcDGiZeDmpQI5Gv/zVG0iSRFQYwrHWXc+NjZ9iZRjhdFrqJZrGmIzxkHYtFTii2k+za6foxCoDFEplSxiUqb8nUhxpPYkC2xlhM9KL3kz8z+smJrz0UybixFBB5ovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C2+vExaZzXPrXl355X6VR5HEY7gGKrgwQXU4QYa0AQCj/AMr/DmSOfFeXc+5q0FJ585hD9wPn8AeyeOZQ==</latexit>

δrISc(I)
<latexit sha1_base64="0agY8OtC6Kmwqxm/zub9rBlsX2w=">AAAB/3icbVBNS8NAEN34WetXVPDiZbEI9VISEfRY9GJvFe0HNCFMtpt26WYTdjdCqT34V7x4UMSrf8Ob/8Ztm4O2Phh4vDfDzLww5Uxpx/m2lpZXVtfWCxvFza3tnV17b7+pkkwS2iAJT2Q7BEU5E7Shmea0nUoKcchpKxxcT/zWA5WKJeJeD1Pqx9ATLGIEtJEC+9DrUq4BewJCDkEN3wWkXDsN7JJTcabAi8TNSQnlqAf2l9dNSBZToQkHpTquk2p/BFIzwum46GWKpkAG0KMdQwXEVPmj6f1jfGKULo4SaUpoPFV/T4wgVmoYh6YzBt1X895E/M/rZDq69EdMpJmmgswWRRnHOsGTMHCXSUo0HxoCRDJzKyZ9kEC0iaxoQnDnX14kzbOK61Tc2/NS9SqPo4CO0DEqIxddoCq6QXXUQAQ9omf0it6sJ+vFerc+Zq1LVj5zgP7A+vwBJaiU3g==</latexit><latexit sha1_base64="0agY8OtC6Kmwqxm/zub9rBlsX2w=">AAAB/3icbVBNS8NAEN34WetXVPDiZbEI9VISEfRY9GJvFe0HNCFMtpt26WYTdjdCqT34V7x4UMSrf8Ob/8Ztm4O2Phh4vDfDzLww5Uxpx/m2lpZXVtfWCxvFza3tnV17b7+pkkwS2iAJT2Q7BEU5E7Shmea0nUoKcchpKxxcT/zWA5WKJeJeD1Pqx9ATLGIEtJEC+9DrUq4BewJCDkEN3wWkXDsN7JJTcabAi8TNSQnlqAf2l9dNSBZToQkHpTquk2p/BFIzwum46GWKpkAG0KMdQwXEVPmj6f1jfGKULo4SaUpoPFV/T4wgVmoYh6YzBt1X895E/M/rZDq69EdMpJmmgswWRRnHOsGTMHCXSUo0HxoCRDJzKyZ9kEC0iaxoQnDnX14kzbOK61Tc2/NS9SqPo4CO0DEqIxddoCq6QXXUQAQ9omf0it6sJ+vFerc+Zq1LVj5zgP7A+vwBJaiU3g==</latexit><latexit sha1_base64="0agY8OtC6Kmwqxm/zub9rBlsX2w=">AAAB/3icbVBNS8NAEN34WetXVPDiZbEI9VISEfRY9GJvFe0HNCFMtpt26WYTdjdCqT34V7x4UMSrf8Ob/8Ztm4O2Phh4vDfDzLww5Uxpx/m2lpZXVtfWCxvFza3tnV17b7+pkkwS2iAJT2Q7BEU5E7Shmea0nUoKcchpKxxcT/zWA5WKJeJeD1Pqx9ATLGIEtJEC+9DrUq4BewJCDkEN3wWkXDsN7JJTcabAi8TNSQnlqAf2l9dNSBZToQkHpTquk2p/BFIzwum46GWKpkAG0KMdQwXEVPmj6f1jfGKULo4SaUpoPFV/T4wgVmoYh6YzBt1X895E/M/rZDq69EdMpJmmgswWRRnHOsGTMHCXSUo0HxoCRDJzKyZ9kEC0iaxoQnDnX14kzbOK61Tc2/NS9SqPo4CO0DEqIxddoCq6QXXUQAQ9omf0it6sJ+vFerc+Zq1LVj5zgP7A+vwBJaiU3g==</latexit>

+

Back Propagation

I 0<latexit sha1_base64="O611lVEKEPViPS120IebE59lAps=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi94q2A9oY9lsJ+3S3STuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgkfYMNwIbCcKqQwEtoLR9dRvPaHSPI7uzThBX9JBxEPOqLFS+/ahmygusVeuuFV3BrJMvJxUIEe9V/7q9mOWSowME1Trjucmxs+oMpwJnJS6qcaEshEdYMfSiErUfja7d0JOrNInYaxsRYbM1N8TGZVaj2VgOyU1Q73oTcX/vE5qwks/41GSGozYfFGYCmJiMn2e9LlCZsTYEsoUt7cSNqSKMmMjKtkQvMWXl0nzrOq5Ve/uvFK7yuMowhEcwyl4cAE1uIE6NICBgGd4hTfn0Xlx3p2PeWvByWcO4Q+czx/53o/q</latexit><latexit sha1_base64="O611lVEKEPViPS120IebE59lAps=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi94q2A9oY9lsJ+3S3STuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgkfYMNwIbCcKqQwEtoLR9dRvPaHSPI7uzThBX9JBxEPOqLFS+/ahmygusVeuuFV3BrJMvJxUIEe9V/7q9mOWSowME1Trjucmxs+oMpwJnJS6qcaEshEdYMfSiErUfja7d0JOrNInYaxsRYbM1N8TGZVaj2VgOyU1Q73oTcX/vE5qwks/41GSGozYfFGYCmJiMn2e9LlCZsTYEsoUt7cSNqSKMmMjKtkQvMWXl0nzrOq5Ve/uvFK7yuMowhEcwyl4cAE1uIE6NICBgGd4hTfn0Xlx3p2PeWvByWcO4Q+czx/53o/q</latexit><latexit sha1_base64="O611lVEKEPViPS120IebE59lAps=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi94q2A9oY9lsJ+3S3STuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgkfYMNwIbCcKqQwEtoLR9dRvPaHSPI7uzThBX9JBxEPOqLFS+/ahmygusVeuuFV3BrJMvJxUIEe9V/7q9mOWSowME1Trjucmxs+oMpwJnJS6qcaEshEdYMfSiErUfja7d0JOrNInYaxsRYbM1N8TGZVaj2VgOyU1Q73oTcX/vE5qwks/41GSGozYfFGYCmJiMn2e9LlCZsTYEsoUt7cSNqSKMmMjKtkQvMWXl0nzrOq5Ve/uvFK7yuMowhEcwyl4cAE1uIE6NICBgGd4hTfn0Xlx3p2PeWvByWcO4Q+czx/53o/q</latexit>

Gradient-Ascent Image Generation

Batch

Confusion

Matrix

+

Augmented Batch

CNN-based

Clsassifier

(Tiger, Cat)

Tail-class

Image

Sampler

Tail-class Image

Confusing

Class

Sampler

Fig. 2. BLT samples a tail-class image I from the batch and its confusion matrix from
the latest validation epoch. Then, our algorithm passes I through the CNN and eval-
uates its class scores Sc(I). Via back-propagation, our method computes the image
perturbation that increases the class score of a selected confusing class (e.g., cat) and
adds the perturbation to the original image to produce I ′. The perturbed image be-
comes the new input, i.e., I ← I ′. The technique iterates until the class score of a target
non-true class reaches certain threshold or an iteration limit. Finally, BLT augments
the input batch with the generated image to resume the regular training procedure.

technique evolves the image I using the underlying neural network and keeps its
parameters frozen. Thus, BLT saves memory because it avoids the parameters of
a generative model and uses efficient implementations of backpropagation from
deep learning libraries to compute the image perturbations. Further, BLT is
about 7 times more efficient than GANs as generating images for ImageNet-LT
adds 3 hours and 53 minutes to the regular 3 hours 10 minutes training time for
a vanilla CNN (compared to additional 48 hours to just train a GAN [59]).

3.2 Augmenting a Batch with Generated Tail-class Hard Examples

The goal of BLT is to generate images from tail classes using gradient ascent
techniques to compensate for the imbalance in a long-tailed dataset. As a data
augmentation technique, BLT generates new images from existing tail-class im-
ages in a batch. These additional images are generated in such a way that they
become hard examples (i.e., confusing examples for tail classes). To this end,
BLT uses the results of a validation process to detect the most confusing classes
for tail classes. Then, it perturbs the images in the batch belonging to tail classes
in such a way that the the resultant images get a higher confusing class score.
Subsequently, BLT appends the hard examples to the batch preserving their
original tail-class labels and resumes the normal training procedure.

Algorithm 1 summarizes BLT. Given a batch B, a list of tail classes T ,
the fraction p of tail-class samples to process, and the confusion matrix from
the latest validation epoch C, BLT first initializes the augmented batch B′ by
copying the original input batch B. Then, it iterates the training samples in the
batch B and creates a list l which contains the identified tail-class samples (step
3). Next, BLT computes the number nT of tail samples to process using the
fraction p where 0 ≤ p ≤ 1 in step 5. Then in steps 6-17, for each tail-class
sample (I, c) ∈ l, BLT selects a confusing class c′ for the tail class c from the
confusion matrix C (step 10). Then, in step 12 BLT computes a minimum class
score sc′ . Next, in step 14, BLT triggers the generation of a new image via the

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 7

Algorithm 1: BLT
Input : Batch B, list of tail classes T , fraction p of tail classes to process, and confusion

matrix C from the latest validation epoch
Output: Augmented Batch B′

1 B′ ← B // Initialize the output batch.
2 // Identify the tail classes present in the original batch.
3 l← IdentifyTailClasses (B, T)
4 // Calculate the number of the tail classes to process.
5 nT ← ⌈p× Length(l)⌉
6 for i← 0 to nT do

7 // For the i-th tail class c, sample an image I of class c in the training set.
8 (I, c)← l [i]

9 // Select a confusing class c′ for the i-th tail class c.

10 c′ ← SelectConfusingClass (C, c)
11 // Sample a class score for S

c′ (·).
12 s

c′ ← SampleClassScore ()
13 // Generate an adversarial image via iterative gradient ascent; see Sec. 3.1.

14 I′ ← HallucinateImage (I, c′, s
c′)

15 // Augment batch with the generated hard example.

16 B′+ =
(

I′, c
)

17 end

18 return B′

gradient ascent technique with a starting image I, target class c′, and class score
threshold sc′ ≥ Sc′ (I

′). Lastly, BLT appends the new hard example (I ′, c) to the
augmented batch B′ (step 16) and returns it in step 18. When the input batch
B does not contain any tail classes, then we return the input batch, i.e., B′ = B.

Our implementation of BLT selects a confusing class in step 4 by using infor-
mation from the confusion matrix C for a given tail class c. Specifically, BLT com-
putes a probability distribution over all classes using the confusion matrix scores
for a tail class c. Then, it uses the computed distribution to sample for a con-
fusing class c′. This strategy will select the most confusing classes more often.
Subsequently, BLT computes the minimum class score sc′ by randomly choosing
a confidence value from within 0.15 and 0.25. Our implementation runs the gra-
dient ascent image generation procedure with a learning rate δ = 0.7. It stops
running when Sc′ (I

′) ≥ sc′ or when it reaches 15 iterations. BLT freezes the
weights of the underlying network, since the goal is to generate new images.
Fig. 2 illustrates how BLT operates.

BLT is independent of model architecture. However, there is an important
aspect of using BLT and a class balancer (e.g., oversampling [23]). Since BLT op-
erates on a batch B, it is possible that the batch contains many tail-class samples
triggering BLT more often. When this happens, our experiments show that the
performance of the head classes decreases. To mitigate this issue, the balancer
needs to reduce the sampling frequency for tail classes. We introduce a procedure
to achieve this for the widely adopted balancer: oversampling via class weights.

The simplest balancer uses class weights wi ≥ 0 to define its sampling policy
using the inverse frequency, i.e., wi = n−1i ·

∑N
i ni, where ni is the number of

training samples for the i-th class. This balancer then normalizes the weights to
compute a probability distribution over the N classes, and uses this distribution
as a sampling policy. This balancer samples tail classes more frequently because

8 J. Kozerawski et al.

their corresponding weights wi tend to be higher. To reduce these weights of
tail-classes, we introduce the following adaptation,

wi =

∑N
i ni

n
γ
i

, (1)

where γ is the exponent that inflates or deflates the weights wi. When 0 <

γ < 1, the proposed balancer samples head-class instances more frequently than
the inverse-frequency balancer. On the other hand, when γ > 1, the balancer
favors tail classes more frequently than the inverse-frequency balancer. This
simple adaptation is effective in maintaining the performance of head-classes
while significantly increasing the performance of tail classes (see Sec. 4.1).

3.3 Squashing-Cosine Classifier

We use an adapted cosine classifier combined with the Large-Margin Softmax
Loss [60]. This is because it is a strict loss and forces a classifier to find a
decision boundary with a desired margin. We generalize the squashing cosine
classifier implemented by Liu et al. [24] by adding two parameters that allow us
to balance the accuracy drop of head classes and the accuracy gain of tail classes.
The adapted squashing-cosine classifier computes the following class scores or
logits for class c as follows:

logitc (x) =

(

α · ‖x‖

β + ‖x‖

)

w⊺

cx

‖wc‖‖x‖
, (2)

where x ∈ R
d is the feature vector of an image I, wc ∈ R

d is the weight vector
for class c, α is a scale parameter, and β controls the squashing factor. We obtain
the cosine classifier used by Liu et al. [24] when α = 16 and β = 1.

3.4 BLT as a Bi-level Optimization and Regularization Per Batch

BLT can be seen as a learning process that uses bi-level optimization and regular-
ization terms for tail classes at every batch. This is because the added images to
the batch come from a gradient ascent procedure. Since the images in a batch go
through the training loss and procedure, they consequently contribute gradients
for the learning process. BLT can be seen as the following per-batch problem:

minimize
θ

1

|B|

∑

(Ii,ci)∈B

H (fθ (Ii) , ci) + λJci ∈ T KH
(

fθ
(

I ′ci
)

, ci
)

subject to I ′ci = argmax
I

fθ (Ii) , sc′
i
≥ fθ (Ii) ; ∀ci ∈ T ,

(3)

where fθ (·) is the CNN-based classifier with parameters θ;H (·) is a classification
loss (e.g., the Large-Margin Softmax loss or binary cross entropy loss); J·K is the
Iverson bracket; ci is the class of Ii; c

′
i is the class to confuse the classifier using

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 9

gradient ascent techniques; and λ is the penalizing factor for mistakes on the
generated images. Our implementation uses λ = 1.

BLT adapts its learning process at every batch. This is because in a stochastic
gradient descent learning process, the parameters θ of the CNN-based classifier
change at every batch. Thanks to this bi-level optimization and regularization,
BLT generates images for tail classes that compensate the long-tailed dataset
and forces the CNN-based classifier to generalize well on few-shot classes.

4 Experiments

This section presents a series of experiments designed to validate the benefits of
BLT on long-tailed datasets. The experiments comprise an ablation study that
reveals the performance effect of the BLT parameters and image classification
experiments on synthetic and naturally long-tailed datasets that measure the
accuracy of BLT applied on different architectures. We implemented BLT on
PyTorch, and trained and ran CNN-based classifiers; see the supplementary ma-
terial for all implementation details (e.g., learning rate policies, optimizer, etc.).
Our code is available at: http://www.github.com/JKozerawski/BLT
Datasets. We use two synthetic long-tailed datasets, ImageNet-LT [24] (1k
classes, 5-1280 images/class) and Places-LT [24] (365 classes, 5-4980 images/class),
and a naturally long-tailed dataset, iNaturalist 2018 [61]. We create a validation
set from the training set for iNaturalist because BLT selects confusing classes
at each validation epoch; the iNaturalist dataset does not contain a test set. To
do so, we selected 5 training samples for every class and discarded the classes
with less than 5 samples in the training set. We used the iNaturalist validation
set modulo the removed classes. The modified iNaturalist dataset contains 8, 122
classes and preserves its natural imbalance with minimum of 2 and maximum of
995 imgs/class. Unless otherwise specified, we assume that the many-shot classes
have more than 100 training images, the medium-shot classes have more than
20 and less or equal to 100 images, and the few-shot classes have less or equal
to 20 training images. Every experiment reports the overall accuracy which is
calculated as the average of per-class accuracies.

4.1 Ablation Study

We study the performance effect of the parameters in the adapted cosine classifier
(see Sec. 3.3), the adapted balancer detailed in Sec. 3.2, the fraction p of tail-class
images in a batch to process (see Sec. 3.2), the compensation of imbalance with
common image augmentations versus those of BLT, and the effect of batch size
on the accuracy achieved by BLT. We use ImageNet-LT dataset and ResNet-10
backbone for this study, and use a batch size of 256 for most experiments.
Squashing-Cosine Classifier. We study the effect on performance of the pa-
rameters of the adapted cosine classifier. For this experiment, we set p = 0.5 and
γ = 1.0 and keep them fixed while varying the parameters α (scaling factor) and
β (squashing factor) of the classifier. In Fig. 3(a) we see that the performance of
few-shot classes decreases by about 3% and the accuracy of many-shot or head

http://www.github.com/JKozerawski/BLT

10 J. Kozerawski et al.

(e) Hallucinations vs Augmentations

0

40

Many-shot Medium-shot Few-shot Overall

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

α=15 α=20 α=25C
la

s
s
ifi

c
a
ti
o

n
 A

c
c
u

ra
c
y
 (
%

)

(a) Scale Factor

0

40

Many-shot Medium-shot Few-shot Overall

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

β=0.5 β=1.0 β=1.5

(b) Squashing Factor

0

40

Many-shot Medium-shot Few-shot Overall

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

γ=0.75 γ=0.9 γ=1.0 γ=1.1 γ=1.25

(c) Balancer

0

40

Many-shot Medium-shot Few-shot Overall

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

p=0 p=0.1 p=0.25 p=0.5

(d) Fraction p

C
la

s
s
ifi

c
a
ti
o

n
 A

c
c
u

ra
c
y
 (
%

)

Many-shot Medium-shot Few-shot Overall

256 128 64 32 16

Many-shot Medium-shot Few-shot Overall
BLT Augmentation

Neither Plain model + sampling

(f) Batch Size

Fig. 3. Top-1 classification accuracy as a function of parameters (a - d); comparison
between BLT, common image augmentation, and sample balancing baselines (e); and
the effect of batch size (f). (a) The performance of few-shot or tail classes deteriorates
and the accuracy of many-shot or head classes improves when α increases. (b) The
accuracy of tail classes improves and the accuracy of head classes decreases when
β increases. (c) The many-shot accuracy decreases while the medium-shot and few-
shot accuracy improves when γ increases. (d) The few-shot accuracy improves while
the medium-shot and many-shot accuracy decreases as p increases. (e) Adding tail-
class images in the batch (via sample balancing or image augmentations) improves
the accuracy of few-shot classes. However, BLT further improves the accuracy of tail
classes compared to common augmentations and BLT without appending images to
the batch (Neither) while preserving the medium-shot and many-shot accuracy. (f)
BLT (lightly colored bars) maintains the accuracy improvement on few-shot classes
over plain balanced models (solidly colored bars) as the batch size decreases.

classes improves by about 4% when α increases. We see in Fig. 3(b) that the
accuracy of few-shot or tail classes improves by about 2% and the performance
of many-shot or head classes drops on average by 1% when β increases. Thus,
setting these parameters properly can help a recognition system control gains or
losses in the performance on head and tail classes.
Balancer. We analyze the effect of the parameter γ in the adapted weight-based
balancer described in Sec. 3.2. For this experiment, we set p = 0.5, α = 20, and
β = 0.5 and keep them fixed while varying the γ parameter. In Fig. 3(c), we
observe that the accuracy of many-shot or head classes decreases by about 11%
while the performance of medium-shot and few-shot or tail classes improves by
about 2% when γ increases. Thus, this parameter helps BLT control the decrease
in the performance on head classes.
Fraction of Tail-class Images to Adversarially Perturb. We examine the
classification accuracy as a function of the fraction of tail-class images in a batch
to process (i.e., p) by BLT. For this experiment we set α = 20, β = 0.5, γ = 1.0
and vary p between 0 and 0.5. We observe in Fig. 3(d) that the accuracy of few-
shot improves by about 6% while the performance of many- and medium-shot
classes fall by about 2% when p increases.
Hallucinations vs Augmentations. BLT changes the statistics of the batch
by supplementing it with hallucinated tail-class images. While this technique is
effective in improving the accuracy of tail classes (see Sec. 4.2), it prompts the

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 11

question whether one can improve the accuracy of tail classes by augmenting
the batch with images computed with an alternative approach, such as com-
mon image-augmentation techniques. To answer this question, we augment a
batch with the same number of tail-class images using common augmentation
techniques (i.e., rotations, crops, mirror flips and color jitter) instead of halluci-
nated samples from BLT. For this experiment, we set α = 20, β = 0.5, γ = 1.0,
p = 0.5 and let the gradient ascent technique iterate in BLT for no more than 15
iterations; and included BLT without appending images to the batch and dubbed
it “Neither”. Fig. 3(e) shows that the performance of tail classes increases by
augmenting the batch with tail-class images regardless of the image generation
techniques (i.e., image augmentations or gradient ascent techniques). However,
the hard examples generated by BLT increase the accuracy of few-shot or tail
classes compared to common image augmentation techniques by about 6% at a
cost of an increase in confusion between medium- and few-shot classes.
Batch Size. Given that BLT operates on a batch, its size can affect the perfor-
mance of BLT. We train a Resnet-10 model combined with BLT and a balancer
with batch sizes varying from 16 to 256 and measure their accuracies. Fig. 3(f)
shows the accuracies of the model combined with BLT (lightly colored bars) and
sampling or balancer (solidly colored bars). We can observe that the accuracies
of many- and medium-shot from BLT remain similar to those of the balancer
and decrease when the batch size decreases. On the other hand, accuracies of
few-shot classes remain stable when the batch size decreases and the accuracies
of BLT are higher than those of the balancer.

4.2 Image Classification on Long-Tailed Datasets

The goal of this experiment is to measure the accuracy gain on tail classes that
BLT brings. Similar to the experiments presented by Liu et al. [24], we used
ResNet-10 and two-stage training approach. The first stage trains the underlying
model without special long-tail techniques. On the other hand, the second stage
starts from the weights learned in the first stage and applies all the techniques
that reduce the bias from long-tailed datasets.
BLT maintains the accuracy of head classes while increasing the ac-

curacy of tail classes on ImageNet-LT and Places-LT. Table 1 and Ta-
ble 2 show the results of image classification on ImageNet-LT and Places-LT
datasets [24], respectively. These Tables report results of methods that were
only trained from scratch. Every row in both Tables present the results of differ-
ent state-of-the-art approaches or baselines that deal with long-tailed datasets.
The results in Table 1 of Lifted Loss [21], Range Loss [22], FSLwF [46], and
OLTR [24] come from those reported by Liu et al. [24]. We reproduce the re-
sults with publicly available code for the remaining baselines. The columns in
both Tables show the top-1 accuracy for many-shot, medium-shot and few-shot
classes. The right-most column shows the overall top-1 accuracy. We can ob-
serve that the results of the baseline model trained without any technique to
address the bias in long-tailed datasets shows that the head-classes (Many col-
umn) achieve higher accuracy than classes with fewer training examples; compare

12 J. Kozerawski et al.

Table 1. Top-1 classification accuracy on ImageNet-LT. BLT maintains high many-
shot accuracy, improves the accuracy of few-shot classes, and keeps the overall accuracy
high. We show the highest accuracy in bold and the second highest in blue.

Methods Many Medium Few Overall

Plain model 52.4 23.1 4.5 31.6
Plain model + sampling 40.6 31.5 14.7 32.5
Lifted Loss [21] 35.8 30.4 17.9 30.8
Range Loss [22] 35.8 30.3 17.6 30.7
FSLwF [46] 40.9 22.1 15.0 28.4
OLTR [24] 43.2 35.1 18.5 35.6
OLTR [24] (Repr.) 39.5 32.5 18.4 33.1
Focal Loss [20] 37.8 31.2 15.0 31.4
CB [18] 29.7 24.7 17.4 25.6
CB Focal Loss [18] 28.0 23.6 17.4 24.4
BLT (Ours) 44.4 33.5 25.5 36.6

(a) Accuracy gain of BLT over plain ResNet-10 (b) Accuracy gain of BLT over OLTR

Fig. 4. Accuracy gains for every class on the ImageNet-LT dataset of BLT w.r.t. the
plain ResNet-10 model and OLTR [24]. We see in (a) that BLT has average gains on
medium- and few-shot classes of 10.93% and 20.63%, respectively. We can observe in
(b) that BLT achieved 3.26% and 6.36% average classification gains on many- and
few-shot classes, respectively.

with Medium and Few columns. When adding a sampling balancer method in
order to select few-shot examples more often, the performance of tail classes (see
Few column) improves. We can observe that our proposed solution increases the
accuracy of the few-shot categories while maintaining a competitive accuracy
compared to the baselines on the many-shot and medium-shot classes. Please
see supplemental material for additional results that include variants of BLT.

BLT maintains the accuracy of head classes high while lifting the ac-

curacy of tail classes on iNaturalist 2018. Table 2 shows the classification
results on the naturally long-tailed dataset iNaturalist [61]. All methods use
ResNet-34 as the backbone. Although many few-shot classes only have two im-
ages, our solution increased the accuracy of tail classes (see Few column). In par-
ticular, BLT increases the overall accuracy and keeps the performance of many-
and medium-shot classes high. The difference in behavior of all methods between
ImageNet-LT, Places-LT, and iNaturalist can be attributed to the “longer tail”
of iNaturalist. The number of few-shot classes in iNaturalist is about 63% of all
classes, compared to 21% for Places-LT, and 15% for ImageNet-LT. Moreover,
many few-shot classes only have two images for training in iNaturalist dataset

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 13

Table 2. Top-1 classification accuracy on Places-LT and iNaturalist 2018. BLT main-
tains high many-shot accuracy, while it improves the few-shot and overall accuracy.
We show in bold and blue the highest and the second highest accuracy, respectively.

Places-LT iNaturalist 2018

Methods Many Medium Few Overall Many Medium Few Overall

Plain model 37.8 13.0 0.8 19.3 70.6 53.0 40.4 46.8
Plain model + sampling 27.8 25.3 7.0 22.4 48.8 53.4 47.1 49.0
OLTR [24] (Repr.) 29.1 26.0 8.3 23.4 44.8 53.7 52.1 51.8
Focal Loss [20] 27.6 25.5 7.0 22.3 28.6 39.0 36.9 36.6
CB [18] 20.5 19.0 12.6 18.2 16.6 25.4 29.1 26.8
CB Focal Loss [18] 18.6 17.7 12.8 17.0 14.0 22.1 27.2 24.5
BLT (Ours) 31.0 27.4 14.1 25.9 53.7 52.5 49.9 51.0

while ImageNet-LT and Places-LT have at least five. Thus, iNaturalist presents
a more challenging scenario for the baselines because few-shot classes dominate.
Accuracy gains on ImageNet-LT. Figs. 4(a,b) show the accuracy boost for
many-shot (head classes), medium-shot and few-shot (tail) classes w.r.t. to the
plain ResNet-10 model and OLTR [24]. We can see that BLT achieved average
gains in accuracy for medium- and few-shot classes by 10.93% and 20.63%, re-
spectively. The performance drop of head (many-shot) classes occurs because the
baseline model has a strong bias due to the imbalance in the dataset. In Fig. 4(b)
we observe that BLT achieves 3.26% and 6.36% average gains respectively on
many- and few-shot classes w.r.t. OLTR. The accuracy gains on tail classes of
BLT over OLTR are consistent; only a few tail classes declined (see yellow bars).
Performance as a function of network depth on ImageNet-LT. Fig. 5(a-
b) demonstrates that BLT increases the overall top-1 accuracy compared to the
plain model with a balancer oversampling tail-classes for all tested backbones
(see Fig. 5(a)). It also improves the accuracy on few-shot classes by a significant
margin (see Fig. 5(b)). We used architectures with different depths and com-
plexity (in FLOPS) such as EfficientNet-b0 [62], ResNet-28, and ResNet-152 [1].
Influence of dynamic image generation. Because a network changes the
topology of its feature space every batch, we study the effect of generating new
tail-class images at different training stages (e.g., at every batch or one time) and
using them for training. To do so, we trained BLT excluding augmentations from
scratch on ImageNet-LT and computed its confusion matrix C′. We tested two
augmentation strategies. The first is BLT static targeted: we generated images
using BLT strategy using C′. The second is BLT static random: we generated
images using gradient ascent techniques and randomly selected confusing classes
for tail categories. In both cases, we used the generated images to train BLT re-
placing its per-batch image generation. Fig. 5(c) shows that BLT with per-batch
operation increases accuracy by 5% w.r.t. the described methods earlier.
Classification error reduction on tail classes. Since BLT generates hard
examples by forcing the classifier to learn a more robust decision function be-
tween each tail class and its most confusing categories, we computed the average
classification error (confusion) as a function of the most mistaken classes for tail

14 J. Kozerawski et al.

EfficientNet-b0

ResNet-10 ResNet-18

DenseNet-121

ResNet-34
ResNet-152

EfficientNet-b0

ResNet-10

ResNet-18
DenseNet-121

ResNet-34

ResNet-152

10

20

30

0 4 8 12

Plain model + sampling BLTEfficientNet-b0

ResNet-10

ResNet-18

DenseNet-121
ResNet-34

ResNet-152

EfficientNet-b0

ResNet-10

ResNet-18

DenseNet-121

ResNet-34 ResNet-152

25

40

0 4 8 12

C
la

ss
if

ic
a

ti
o

n
 a

cc
u

ra
cy

 (
%

)

Plain model + sampling BLT

0

15

1 10 100

C
o

n
fu

si
o

n
 (

%
)

Plain OLTR Augmentations BLT

(a) Overall Accuracy (b) Few-shot Accuracy

(c) Image Generation at Different Training Stages (d) Average Confusion on tail-classes

C
la

s
s
ifi

c
a
ti
o

n
 a

c
c
u

ra
c
y
 (
%

)
C

la
s
s
ifi

c
a
ti
o

n
 a

c
c
u

ra
c
y
 (
%

)

FLOPS (G)FLOPS (G)

C
o

n
fu

s
io

n
 (
%

)

Ranked Confusing Categories

40

Many-shot Medium-shot Few-shot Overall

Plain model + sampling BLT static targeted*
BLT excluding augmentations BLT static random*
BLT

C
la

s
s
ifi

c
a
ti
o

n
 a

c
c
u

ra
c
y
 (
%

)

Fig. 5. Top-1 classification accuracy vs FLOPS for BLT and plain model with sample
balancing across different architectures (a-b). BLT preserves high overall accuracy for
all backbones (a) while significantly increasing the performance for few-shot classes
(b). Influence of generating images at different training stages (c). Two approaches of
generating images statically (*) cannot increase the few-shot accuracy above the level
of BLT excluding augmentations, while dynamic image generation (BLT) increases the
performance by 5.4%. Overall, we see a favorable trade-off as a 7.6% increase in few-
shot accuracy leads to a modest 1.2% drop in overall accuracy. Average classification
error (confusion) on tail classes as a function of the ranked misclassified categories (d).
Because BLT uses hard examples to force the CNN-based classifier learn a more robust
decision function for tail classes, it reduces the errors on the most confusing classes.

categories. Fig. 5(d) shows that BLT reduces the confusion against the most
frequently mistaken categories without increasing the error for less confusing
classes. Although augmentations and OLTR also decrease the error of tail classes
on their most confusing categories, Fig. 5(d) demonstrates that BLT is the most
effective approach, thereby increasing the performance on tail classes.

5 Conclusion

We presented BLT, a data augmentation technique that compensates the im-
balance of long-tailed classes by generating hard examples via gradient ascent
techniques [29–31] from existing training tail-class examples. It generates hard
examples for tail classes via gradient ascent at every batch using information
from the latest confusion matrix. BLT circumvents the use of dedicated gener-
ative models (e.g., GANs [26, 27] or VAEs [28]), which increase computational
overhead and require sophisticated training procedures. These hard examples
force the CNN-based classifier to produce a more robust decision function yield-
ing an accuracy increase for tail classes while maintaining the performance on
head classes. BLT is a novel, efficient, and effective approach. The experiments
on synthetically and organic long-tailed datasets as well as across different ar-
chitectures show that BLT improves learning from long-tailed datasets.

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 15

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. (2016)

2. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. (2017)

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Advances in Neural Information Processing
Systems. (2012)

4. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518 (2015) 529

5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. In: International Conference on Learning Representations. (2015)

6. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition. (2015)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. (2009)

8. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. (2007)

9. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: Proc. of the
European Conference on Computer Vision, Springer (2014)

10. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library. (1996)

11. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition. (2009)

12. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision 115 (2015) 211–252

13. Salakhutdinov, R., Torralba, A., Tenenbaum, J.: Learning to share visual appear-
ance for multiclass object detection. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition. (2011)

14. Van Horn, G., Perona, P.: The devil is in the tails: Fine-grained classification in
the wild. arXiv preprint arXiv:1709.01450 (2017)

15. Wang, Y.X., Hebert, M.: Learning from small sample sets by combining unsuper-
vised meta-training with cnns. In: Proc. of the Advances in Neural Information
Processing Systems. (2016)

16. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Proc. of
the Advances in Neural Information Processing Systems. (2017)

17. Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of ob-
ject subcategories. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition. (2014)

18. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. (2019)

19. Dong, Q., Gong, S., Zhu, X.: Class rectification hard mining for imbalanced deep
learning. In: Proc. of the IEEE Intl. Conference on Computer Vision. (2017)

16 J. Kozerawski et al.

20. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proc. of the IEEE Intl. Conference on Computer Vision. (2017)

21. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition. (2016)

22. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition
with long-tailed training data. In: Proc. of the IEEE Intl. Conference on Computer
Vision. (2017)

23. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering 21 (2009) 1263–1284

24. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed
recognition in an open world. In: Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition. (2019)

25. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning
for face recognition with under-represented data. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition. (2019)

26. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: Proc. of the International Conference on Machine Learning. (2017)

27. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Proc. of the Advances
in Neural Information Processing Systems. (2014)

28. van den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In:
Proc. of the Advances in Neural Information Processing Systems. (2017)

29. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features
of a deep network. University of Montreal 1341 (2009) 1

30. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition. (2015)

31. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: Workshop at Inter-
national Conference on Learning Representations. (2014)

32. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition. (2016)

33. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition. (2017)

34. Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H., Bubeck, S., Yang, G.:
Provably robust deep learning via adversarially trained smoothed classifiers. In:
Proc. of the Advances in Neural Information Processing Systems. (2019)

35. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set
recognition. IEEE transactions on pattern analysis and machine intelligence 35
(2012) 1757–1772

36. Zhong, Y., Deng, W., Wang, M., Hu, J., Peng, J., Tao, X., Huang, Y.: Unequal-
training for deep face recognition with long-tailed noisy data. In: Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition. (2019)

37. Huang, C., Li, Y., Change Loy, C., Tang, X.: Learning deep representation for
imbalanced classification. In: Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition. (2016)

BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images 17

38. Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., Song, Y.: Metagan: An adversarial
approach to few-shot learning. In: Proc. of the Advances in Neural Information
Processing Systems. (2018)

39. Jang, Y., Zhao, T., Hong, S., Lee, H.: Adversarial defense via learning to generate
diverse attacks. In: Proc. of the IEEE Intl. Conference on Computer Vision. (2019)

40. Zhang, J., Zhao, C., Ni, B., Xu, M., Yang, X.: Variational few-shot learning. In:
Proceedings of the IEEE International Conference on Computer Vision. (2019)
1685–1694

41. Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. In:
The IEEE International Conference on Computer Vision (ICCV). (2019)

42. Peng, X., Tang, Z., Yang, F., Feris, R.S., Metaxas, D.: Jointly optimize data aug-
mentation and network training: Adversarial data augmentation in human pose
estimation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recog-
nition. (2018)

43. Hoffman, J., Gupta, S., Darrell, T.: Learning with side information through modal-
ity hallucination. In: Proc. of the IEEE Conference on Computer Vision and Pat-
tern Recognition. (2016)

44. Zhang, H., Zhang, J., Koniusz, P.: Few-shot learning via saliency-guided hallu-
cination of samples. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition. (2019)

45. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hal-
lucinating features. In: Proc. of the IEEE Intl. Conference on Computer Vision.
(2017)

46. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting.
In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. (2018)

47. Pahde, F., Nabi, M., Klein, T., Jahnichen, P.: Discriminative hallucination for
multi-modal few-shot learning. In: Proc. of the IEEE International Conference on
Image Processing. (2018)

48. Wang, Y., Zhou, L., Qiao, Y.: Temporal hallucinating for action recognition with
few still images. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition. (2018)

49. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from
imaginary data. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition. (2018)

50. Chen, Z., Fu, Y., Wang, Y.X., Ma, L., Liu, W., Hebert, M.: Image deformation
meta-networks for one-shot learning. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition. (2019)

51. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Proc. of the Intl. Conference on Learning Representations. (2015)

52. Chen, H., Zhang, H., Boning, D., Hsieh, C.J.: Robust decision trees against ad-
versarial examples. arXiv preprint arXiv:1902.10660 (2019)

53. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial
examples are not bugs, they are features. In: Proc. of the Advances in Neural
Information Processing Systems. (2019)

54. Liu, A., Liu, X., Zhang, C., Yu, H., Liu, Q., He, J.: Training robust deep neural
networks via adversarial noise propagation. arXiv preprint arXiv:1909.09034 (2019)

55. Lopes, R.G., Yin, D., Poole, B., Gilmer, J., Cubuk, E.D.: Improving robustness
without sacrificing accuracy with patch gaussian augmentation. arXiv preprint
arXiv:1906.02611 (2019)

56. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

18 J. Kozerawski et al.

57. Rozsa, A., Rudd, E.M., Boult, T.E.: Adversarial diversity and hard positive gen-
eration. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
Workshops. (2016)

58. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by
back-propagating errors. Cognitive modeling 5 (1988) 1

59. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

60. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional
neural networks. In: Proc. of the Intl. Conference on Machine Learning. (2016)

61. Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H.,
Perona, P., Belongie, S.: The inaturalist species classification and detection dataset.
In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. (2018)

62. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946 (2019)

